Coupled forward-backward trajectory approach for nonequilibrium electron-ion dynamics

被引:13
作者
Sato, Shunsuke A. [1 ,2 ]
Kelly, Aaron [3 ]
Rubio, Angel [1 ,2 ,4 ,5 ]
机构
[1] Max Planck Inst Struct & Dynam Matter, Luruper Chaussee 149, D-22761 Hamburg, Germany
[2] Ctr Free Electron Laser Sci, Luruper Chaussee 149, D-22761 Hamburg, Germany
[3] Dalhousie Univ, Dept Chem, 6274 Coburg Rd, Halifax, NS B3H 4R2, Canada
[4] Flatiron Inst, Ctr Computat Quantum Phys CCQ, 162 Fifth Ave, New York, NY 10010 USA
[5] Univ Basque Country, Nanobio Spect Grp, San Sebastian 20018, Spain
基金
欧洲研究理事会; 加拿大自然科学与工程研究理事会;
关键词
INITIAL-VALUE REPRESENTATION; NONADIABATIC DYNAMICS; MOLECULAR-DYNAMICS; SPACE QUANTIZATION; QUANTUM; SIMULATIONS; EQUATION; STATES; MODEL; ENVIRONMENTS;
D O I
10.1103/PhysRevB.97.134308
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We introduce a simple ansatz for the wave function of a many-body system based on coupled forward and backward propagating semiclassical trajectories. This method is primarily aimed at, but not limited to, treating nonequilibrium dynamics in electron-phonon systems. The time evolution of the system is obtained from the Euler-Lagrange variational principle, and we show that this ansatz yields Ehrenfestmean-field theory in the limit that the forward and backward trajectories are orthogonal, and in the limit that they coalesce. We investigate accuracy and performance of this method by simulating electronic relaxation in the spin-boson model and the Holstein model. Although this method involves only pairs of semiclassical trajectories, it shows a substantial improvement over mean-field theory, capturing quantum coherence of nuclear dynamics as well as electron-nuclear correlations. This improvement is particularly evident in nonadiabatic systems, where the accuracy of this coupled trajectory method extends well beyond the perturbative electron-phonon coupling regime. This approach thus provides an attractive route forward to the ab initio description of relaxation processes, such as thermalization, in condensed phase systems.
引用
收藏
页数:11
相关论文
共 61 条
[1]  
Bell R.P., 2013, PROTON CHEM, DOI 10.1007/978-1-4757-1592-7
[2]   LAND-map, a linearized approach to nonadiabatic dynamics using the mapping formalism [J].
Bonella, S ;
Coker, DF .
JOURNAL OF CHEMICAL PHYSICS, 2005, 122 (19)
[3]   Integrability of the Rabi Model [J].
Braak, D. .
PHYSICAL REVIEW LETTERS, 2011, 107 (10)
[4]   Numerically exact long-time magnetization dynamics at the nonequilibrium Kondo crossover of the Anderson impurity model [J].
Cohen, Guy ;
Gull, Emanuel ;
Reichman, David R. ;
Millis, Andrew J. ;
Rabani, Eran .
PHYSICAL REVIEW B, 2013, 87 (19)
[5]   Memory effects in nonequilibrium quantum impurity models [J].
Cohen, Guy ;
Rabani, Eran .
PHYSICAL REVIEW B, 2011, 84 (07)
[6]   Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature [J].
Collini, Elisabetta ;
Wong, Cathy Y. ;
Wilk, Krystyna E. ;
Curmi, Paul M. G. ;
Brumer, Paul ;
Scholes, Gregory D. .
NATURE, 2010, 463 (7281) :644-U69
[7]   Photonic Realization of the Quantum Rabi Model [J].
Crespi, A. ;
Longhi, S. ;
Osellame, R. .
PHYSICAL REVIEW LETTERS, 2012, 108 (16)
[8]   Trajectory-Based Nonadiabatic Dynamics with Time-Dependent Density Functional Theory [J].
Curchod, Basile F. E. ;
Rothlisberger, Ursula ;
Tavernelli, Ivano .
CHEMPHYSCHEM, 2013, 14 (07) :1314-1340
[9]   Real-time decay of a highly excited charge carrier in the one-dimensional Holstein model [J].
Dorfner, F. ;
Vidmar, L. ;
Brockt, C. ;
Jeckelmann, E. ;
Heidrich-Meisner, F. .
PHYSICAL REVIEW B, 2015, 91 (10)
[10]   Iterative linearized approach to nonadiabatic dynamics [J].
Dunkel, E. R. ;
Bonella, S. ;
Coker, D. F. .
JOURNAL OF CHEMICAL PHYSICS, 2008, 129 (11)