Accumulation of soil carbon under elevated CO2 unaffected by warming and drought

被引:18
|
作者
Dietzen, Christiana A. [1 ,2 ]
Larsen, Klaus Steenberg [1 ]
Ambus, Per L. [3 ]
Michelsen, Anders [4 ]
Arndal, Marie Frost [1 ]
Beier, Claus [1 ]
Reinsch, Sabine [5 ]
Schmidt, Inger Kappel [1 ]
机构
[1] Univ Copenhagen, Dept Geosci & Nat Resource Management, Frederiksberg C, Denmark
[2] Univ Washington, Sch Environm & Forest Sci, Box 352100, Seattle, WA 98195 USA
[3] Univ Copenhagen, Dept Geosci & Nat Resource Management, Copenhagen K, Denmark
[4] Univ Copenhagen, Dept Biol, Copenhagen O, Denmark
[5] Environm Ctr Wales, Ctr Ecol & Hydrol, Bangor, Gwynedd, Wales
关键词
climate driver interactions; drought; elevated CO2; FACE; multifactor climate change experiment; soil carbon; warming; CLIMATE-CHANGE; ORGANIC-CARBON; TERRESTRIAL ECOSYSTEMS; VERTICAL-DISTRIBUTION; PROCESS RESPONSES; ATMOSPHERIC CO2; ROOT-GROWTH; NITROGEN; STORAGE; TEMPERATURE;
D O I
10.1111/gcb.14699
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Elevated atmospheric CO2 concentration and climate change may substantially alter soil carbon (C) dynamics, which in turn may impact future climate through feedback cycles. However, only very few field experiments worldwide have combined elevated CO2 (eCO(2)) with both warming and changes in precipitation in order to study the potential combined effects of changes in these fundamental drivers of C cycling in ecosystems. We exposed a temperate heath/grassland to eCO(2), warming, and drought, in all combinations for 8 years. At the end of the study, soil C stocks were on average 0.927 kg C/m(2) higher across all treatment combinations with eCO(2) compared to ambient CO2 treatments (equal to an increase of 0.120 +/- 0.043 kg C m(-2) year(-1)), and showed no sign of slowed accumulation over time. However, if observed pretreatment differences in soil C are taken into account, the annual rate of increase caused by eCO(2) may be as high as 0.177 +/- 0.070 kg C m(-2) year(-1). Furthermore, the response to eCO(2) was not affected by simultaneous exposure to warming and drought. The robust increase in soil C under eCO(2) observed here, even when combined with other climate change factors, suggests that there is continued and strong potential for enhanced soil carbon sequestration in some ecosystems to mitigate increasing atmospheric CO2 concentrations under future climate conditions. The feedback between land C and climate remains one of the largest sources of uncertainty in future climate projections, yet experimental data under simulated future climate, and especially including combined changes, are still scarce. Globally coordinated and distributed experiments with long-term measurements of changes in soil C in response to the three major climate change-related global changes, eCO(2), warming, and changes in precipitation patterns, are, therefore, urgently needed.
引用
收藏
页码:2970 / 2977
页数:8
相关论文
共 50 条
  • [1] Elevated CO2 and warming cause interactive effects on soil carbon and shifts in carbon use by bacteria
    Carrillo, Yolima
    Dijkstra, Feike
    LeCain, Dan
    Blumenthal, Dana
    Pendall, Elise
    ECOLOGY LETTERS, 2018, 21 (11) : 1639 - 1648
  • [2] Controls over Soil Nitrogen Pools in a Semiarid Grassland Under Elevated CO2 and Warming
    Yolima Carrillo
    Feike A. Dijkstra
    Elise Pendall
    Jack A. Morgan
    Dana M. Blumenthal
    Ecosystems, 2012, 15 : 761 - 774
  • [3] Controls over Soil Nitrogen Pools in a Semiarid Grassland Under Elevated CO2 and Warming
    Carrillo, Yolima
    Dijkstra, Feike A.
    Pendall, Elise
    Morgan, Jack A.
    Blumenthal, Dana M.
    ECOSYSTEMS, 2012, 15 (05) : 761 - 774
  • [4] Warming and elevated CO2 intensify drought and recovery responses of grassland carbon allocation to soil respiration
    Meeran, Kathiravan
    Ingrisch, Johannes
    Reinthaler, David
    Canarini, Alberto
    Mueller, Lena
    Poetsch, Erich M.
    Richter, Andreas
    Wanek, Wolfgang
    Bahn, Michael
    GLOBAL CHANGE BIOLOGY, 2021, 27 (14) : 3230 - 3243
  • [5] Impact of elevated atmospheric CO2 on the wheat rhizomicrobiome under the additional influence of warming, drought, and nitrogen fertilization
    Krause, Sascha M. B.
    Szoboszlay, Marton
    Dier, Markus
    Erbs, Martin
    Manderscheid, Remy
    Weigel, Hans-Joachim
    Tebbe, Christoph C.
    EUROPEAN JOURNAL OF SOIL BIOLOGY, 2023, 117
  • [6] Long-term elevated CO2 and warming enhance microbial necromass carbon accumulation in a paddy soil
    Liu, Zhiwei
    Liu, Xiuxia
    Wu, Xiulan
    Bian, Rongjun
    Liu, Xiaoyu
    Zheng, Jufeng
    Zhang, Xuhui
    Cheng, Kun
    Li, Lianqing
    Pan, Genxing
    BIOLOGY AND FERTILITY OF SOILS, 2021, 57 (05) : 673 - 684
  • [7] Enhanced priming of old, not new soil carbon at elevated atmospheric CO2
    Vestergard, Mette
    Reinsch, Sabine
    Bengtson, Per
    Ambus, Per
    Christensen, Soren
    SOIL BIOLOGY & BIOCHEMISTRY, 2016, 100 : 140 - 148
  • [8] Effects of elevated CO2, warming and drought episodes on plant carbon uptake in a temperate heath ecosystem are controlled by soil water status
    Albert, K. R.
    Ro-Poulsen, H.
    Mikkelsen, T. N.
    Michelsen, A.
    Van der Linden, L.
    Beier, C.
    PLANT CELL AND ENVIRONMENT, 2011, 34 (07) : 1207 - 1222
  • [9] Combined effects of warming and elevated CO2 on the impact of drought in grassland species
    Naudts, K.
    Van den Berge, J.
    Janssens, I. A.
    Nijs, I.
    Ceulemans, R.
    PLANT AND SOIL, 2013, 369 (1-2) : 497 - 507
  • [10] Interactive effects of elevated CO2, warming, and drought on photosynthesis of Deschampsia flexuosa in a temperate heath ecosystem
    Albert, K. R.
    Ro-Poulsen, H.
    Mikkelsen, T. N.
    Michelsen, A.
    van der Linden, L.
    Beier, C.
    JOURNAL OF EXPERIMENTAL BOTANY, 2011, 62 (12) : 4253 - 4266