Evaluation of Atlas-Based Attenuation Correction for Integrated PET/MR in Human Brain: Application of a Head Atlas and Comparison to True CT-Based Attenuation Correction

被引:69
作者
Sekine, Tetsuro [1 ,2 ,3 ]
Buck, Alfred [1 ,2 ]
Delso, Gaspar [1 ,2 ,4 ]
ter Voert, Edwin E. G. W. [1 ,2 ]
Huellner, Martin [1 ,2 ,5 ]
Veit-Haibach, Patrick [1 ,2 ,6 ]
Warnock, Geoffrey [1 ,2 ]
机构
[1] Univ Zurich Hosp, Dept Nucl Med, CH-8091 Zurich, Switzerland
[2] Univ Zurich, Zurich, Switzerland
[3] Nippon Med Sch, Dept Radiol, 1-1-5 Sendagi, Tokyo 113, Japan
[4] GE Healthcare, Waukesha, WI USA
[5] Univ Zurich Hosp, Dept Neuroradiol, CH-8091 Zurich, Switzerland
[6] Univ Zurich Hosp, Dept Med Radiol, Div Diagnost & Intervent Radiol, CH-8091 Zurich, Switzerland
基金
英国工程与自然科学研究理事会;
关键词
PET/MR; attenuation correction; atlas-based; brain; 18F-FDG; MRI; SEGMENTATION; RECONSTRUCTION; SYSTEMS; IMAGES; SKULL; BONE; MAPS;
D O I
10.2967/jnumed.115.159228
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Attenuation correction (AC) for integrated PET/MR imaging in the human brain is still an open problem. In this study, we evaluated a simplified atlas-based AC (Atlas-AC) by comparing F-18-FDG PET data corrected using either Atlas-AC or true CT data (CT-AC). Methods: We enrolled 8 patients (median age, 63 y). All patients underwent clinically indicated whole-body F-18-FDG PET/CT for staging, restaging, or follow-up of malignant disease. All patients volunteered for an additional PET/MR of the head (additional tracer was not injected). For each patient, 2 AC maps were generated: an Atlas-AC map registered to a patient-specific liver accelerated volume acquisition-Flex MR sequence and using a vendor-provided head atlas generated from multiple CT head images and a CT-based AC map. For comparative AC, the CT-AC map generated from PET/CT was superimposed on the Atlas-AC map. PET images were reconstructed from the list-mode raw data from the PET/MR imaging scanner using each AC map. All PET images were normalized to the SPM5 PET template, and F-18-FDG accumulation was quantified in 67 volumes of interest (VOIs; automated anatomic labeling atlas). Relative difference (%diff) between images based on Atlas-AC and CT-AC was calculated, and averaged difference images were generated. F-18-FDG uptake in all VOIs was compared using Bland-Altman analysis. Results: The range of error in all 536 VOIs was -3.0%-7.3%. Whole-brain F-18-FDG uptake based on Atlas-AC was slightly underestimated (%diff = 2.19% +/- 1.40%). The underestimation was most pronounced in the regions below the anterior/posterior commissure line, such as the cerebellum, temporal lobe, and central structures (%diff = 3.69% +/- 1.43%, 3.25% +/- 1.42%, and 3.05% +/- 1.18%), suggesting that Atlas-AC tends to underestimate the attenuation values of the skull base bone. Conclusion: When compared with the gold-standard CT-AC, errors introduced using Atlas-AC did not exceed 8% in any brain region investigated. Underestimation of F-18-FDG uptake was minor (<4%) but significant in regions near the skull base.
引用
收藏
页码:215 / 220
页数:6
相关论文
共 31 条
[1]   THICKNESS OF NORMAL SKULL IN AMERICAN BLACKS AND WHITES [J].
ADELOYE, A ;
KATTAN, KR ;
SILVERMAN, FN .
AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, 1975, 43 (01) :23-30
[2]   Combined PET/MR imaging in neurology: MR-based attenuation correction implies a strong spatial bias when ignoring bone [J].
Andersen, Flemming Littrup ;
Ladefoged, Claes Nohr ;
Beyer, Thomas ;
Keller, Sune Hogild ;
Hansen, Adam Espe ;
Hojgaard, Liselotte ;
Kjaer, Andreas ;
Law, Ian ;
Holm, Soren .
NEUROIMAGE, 2014, 84 :206-216
[3]   MRI-Based Attenuation Correction for Hybrid PET/MRI Systems: A 4-Class Tissue Segmentation Technique Using a Combined Ultrashort-Echo-Time/Dixon MRI Sequence [J].
Berker, Yannick ;
Franke, Jochen ;
Salomon, Andre ;
Palmowski, Moritz ;
Donker, Henk C. W. ;
Temur, Yavuz ;
Mottaghy, Felix M. ;
Kuhl, Christiane ;
Izquierdo-Garcia, David ;
Fayad, Zahi A. ;
Kiessling, Fabian ;
Schulz, Volkmar .
JOURNAL OF NUCLEAR MEDICINE, 2012, 53 (05) :796-804
[4]   Physical Performance of the new hybrid PET/CT Discovery-690 [J].
Bettinardi, V. ;
Presotto, L. ;
Rapisarda, E. ;
Picchio, M. ;
Gianolli, L. ;
Gilardi, M. C. .
MEDICAL PHYSICS, 2011, 38 (10) :5394-5411
[5]   MR-Based PET Attenuation Correction for PET/MR Imaging [J].
Bezrukov, Ilja ;
Mantlik, Frederic ;
Schmidt, Holger ;
Schoelkopf, Bernhard ;
Pichler, Bernd J. .
SEMINARS IN NUCLEAR MEDICINE, 2013, 43 (01) :45-59
[6]   Attenuation Correction Synthesis for Hybrid PET-MR Scanners: Application to Brain Studies [J].
Burgos, Ninon ;
Cardoso, M. Jorge ;
Thielemans, Kris ;
Modat, Marc ;
Pedemonte, Stefano ;
Dickson, John ;
Barnes, Anna ;
Ahmed, Rebekah ;
Mahoney, Colin J. ;
Schott, Jonathan M. ;
Duncan, John S. ;
Atkinson, David ;
Arridge, Simon R. ;
Hutton, Brian F. ;
Ourselin, Sebastien .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2014, 33 (12) :2332-2341
[7]   Method for transforming CT images for attenuation correction in PET/CT imaging [J].
Carney, JPJ ;
Townsend, DW ;
Rappoport, V ;
Bendriem, B .
MEDICAL PHYSICS, 2006, 33 (04) :976-983
[8]   Toward Implementing an MRI-Based PET Attenuation-Correction Method for Neurologic Studies on the MR-PET Brain Prototype [J].
Catana, Ciprian ;
van der Kouwe, Andre ;
Benner, Thomas ;
Michel, Christian J. ;
Hamm, Michael ;
Fenchel, Matthias ;
Fischl, Bruce ;
Rosen, Bruce ;
Schmand, Matthias ;
Sorensen, A. Gregory .
JOURNAL OF NUCLEAR MEDICINE, 2010, 51 (09) :1431-1438
[9]   Probabilistic Air Segmentation and Sparse Regression Estimated Pseudo CT for PET/MR Attenuation Correction [J].
Chen, Yasheng ;
Juttukonda, Meher ;
Su, Yi ;
Benzinger, Tammie ;
Rubin, Brian G. ;
Lee, Yueh Z. ;
Lin, Weili ;
Shen, Dinggang ;
Lalush, David ;
An, Hongyu .
RADIOLOGY, 2015, 275 (02) :562-569
[10]   Cluster-based segmentation of dual-echo ultra-short echo time images for PET/MR bone localization [J].
Delso G. ;
Zeimpekis K. ;
Carl M. ;
Wiesinger F. ;
Hüllner M. ;
Veit-Haibach P. .
EJNMMI Physics, 1 (1) :1-13