Deep Conversational Recommender Systems: Challenges and Opportunities

被引:1
|
作者
Dai Hoang Tran [1 ]
Sheng, Quan Z. [1 ,2 ]
Zhang, Wei Emma [3 ]
Hamad, Salma Abdalla [1 ]
Khoa, Nguyen Lu Dang [4 ]
Tran, Nguyen H. [5 ]
机构
[1] Macquarie Univ, Sydney, NSW, Australia
[2] Macquarie Univ, Dept Comp, Sydney, NSW, Australia
[3] Univ Adelaide, Sch Comp Sci, Adelaide, SA, Australia
[4] CSIRO, Data61, Analyt & Decis Sci Program, Sydney, NSW, Australia
[5] Univ Sydney, Sydney, NSW, Australia
基金
澳大利亚研究理事会;
关键词
D O I
10.1109/MC.2020.3045426
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Unlike traditional recommender systems, the conversational recommender system (CRS) models a user's preferences through interactive dialogue conversations. Recently, deep learning approaches have been applied to CRSs, producing fruitful results. We discuss the development of deep CRSs and future research directions. © 1970-2012 IEEE.
引用
收藏
页码:30 / 39
页数:10
相关论文
共 50 条
  • [31] CRSAL: Conversational Recommender Systems with Adversarial Learning
    Ren, Xuhui
    Yin, Hongzhi
    Chen, Tong
    Wang, Hao
    Nguyen Quoc Viet Hung
    Huang, Zi
    Zhang, Xiangliang
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2020, 38 (04)
  • [32] Chatbots as Conversational Recommender Systems in Urban Contexts
    Kucherbaev, Pavel
    Psyllidis, Achilleas
    Bozzon, Alessandro
    PROCEEDINGS OF INTERNATIONAL WORKSHOP ON CITIZENS FOR RECOMMENDER SYSTEMS (CITREC 2017), 2017,
  • [33] Unifying Recommender Systems and Conversational User Interfaces
    Starke, Alain D.
    Lee, Minha
    PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON CONVERSATIONAL USER INTERFACES, CUI 2022, 2022,
  • [34] Conversational Recommender System Using Deep Reinforcement Learning
    Sonie, Omprakash
    PROCEEDINGS OF THE 16TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2022, 2022, : 718 - 719
  • [36] Feature selection methods for conversational recommender systems
    Mirzadeh, N
    Ricci, F
    Bansal, M
    2005 IEEE INTERNATIONAL CONFERENCE ON E-TECHNOLOGY, E-COMMERCE AND E-SERVICE, PROCEEDINGS, 2005, : 772 - 777
  • [37] Latent Linear Critiquing for Conversational Recommender Systems
    Luo, Kai
    Sanner, Scott
    Wu, Ga
    Li, Hanze
    Yang, Hojin
    WEB CONFERENCE 2020: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2020), 2020, : 2535 - 2541
  • [38] Interactive recommender systems: A survey of the state of the art and future research challenges and opportunities
    He, Chen
    Parra, Denis
    Verbert, Katrien
    EXPERT SYSTEMS WITH APPLICATIONS, 2016, 56 : 9 - 27
  • [39] Context-Aware Recommender Systems for Social Networks: Review, Challenges and Opportunities
    Suhaim, Areej Bin
    Berri, Jawad
    IEEE ACCESS, 2021, 9 : 57440 - 57463
  • [40] On the dynamic generation of compound critiques in conversational recommender systems
    McCarthy, K
    Reilly, J
    McGinty, L
    Smyth, B
    ADAPTIVE HYPERMEDIA AND ADAPTIVE WEB-BASED SYSTEMS, PROCEEDINGS, 2004, 3137 : 176 - 184