Surface Redox-Active Organosulfur-Tethered Carbon Nanotubes for High Power and Long Cyclability of Na-Organosulfur Hybrid Energy Storage

被引:23
作者
Jana, Milan [1 ]
Park, Jae Min [1 ]
Kota, Manikantan [1 ]
Shin, Kang Ho [1 ]
Rana, Harpalsinh H. [1 ]
Nakhanivej, Puritut [1 ]
Huang, Jia-Qi [2 ]
Park, Ho Seok [1 ,3 ,4 ]
机构
[1] Sungkyunkwan Univ, Sch Chem Engn, Suwon 16419, South Korea
[2] Beijing Inst Technol, Adv Res Inst Multidisciplinary Sci, Beijing 100081, Peoples R China
[3] Sungkyunkwan Univ, Dept Hlth Sci & Technol, Samsung Adv Inst Hlth Sci & Technol SAIHST, Suwon 16419, South Korea
[4] Sungkyunkwan Univ, SKKU Adv Inst Nano Technol SAINT, Suwon 16419, South Korea
基金
新加坡国家研究基金会;
关键词
ELECTROCHEMICAL-PERFORMANCE; ELEMENTAL SULFUR; LITHIUM-SULFUR; SODIUM; CAPACITORS; GRAPHENE; BATTERIES; DESIGN; ANODE; OXIDE;
D O I
10.1021/acsenergylett.0c02188
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Despite the clear benefits of Na and S active materials, Na-S hybrid energy storage devices have yet to be exploited, and existing Na-S batteries cannot provide fast kinetics and long-term stability. Herein, we describe chemical and electronic coupling of the redox-active organosulfur moiety (-S-S-S-) with carbon nanotube (CNT) networks for high power and long cyclability of Na-organosulfur hybrid energy storage devices. The facile and reversible surface redox kinetics of organosulfur-tethered CNT is associated with a two-electron transfer toward the formation of low-order polysulfide, as confirmed by in situ and ex situ analyses. The specific capacitance of SOS-OCNT is 377 F g(-1) (94% of theoretical capacitance) and 61.3% of capacitance is retained at 10 A g(-1). The Na-organosulfur hybrid full cells deliver an ultrahigh power density of 13.4 kW kg(-1) and high energy density of 27 Wh kg(-1) over 50000 cycles.
引用
收藏
页码:280 / 289
页数:10
相关论文
共 51 条
[1]   High Power Sodium-Ion Batteries and Hybrid Electrochemical Capacitors Using Mo or Nb-Doped Nano-Titania Anodes [J].
Bauer, Dustin ;
Roberts, Alexander J. ;
Patnaik, Sai Gourang ;
Brett, Dan J. L. ;
Shearing, Paul R. ;
Kendrick, Emma ;
Matsumi, Noriyoshi ;
Darr, Jawwad A. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2018, 165 (09) :A1662-A1670
[2]  
Bepete G, 2017, NAT CHEM, V9, P347, DOI [10.1038/nchem.2669, 10.1038/NCHEM.2669]
[3]   Nanostructured Na2Ti9O19 for Hybrid Sodium-Ion Capacitors with Excellent Rate Capability [J].
Bhat, Swetha S. M. ;
Babu, Binson ;
Feygenson, Mikhail ;
Neuefeind, Joerg C. ;
Shaijumon, M. M. .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (01) :437-447
[4]   Biomimetic Spider-Web-Like Composites for Enhanced Rate Capability and Cycle Life of Lithium Ion Battery Anodes [J].
Bhattacharya, Pallab ;
Kota, Manikantan ;
Suh, Dong Hoon ;
Roh, Kwang Chul ;
Park, Ho Seok .
ADVANCED ENERGY MATERIALS, 2017, 7 (17)
[5]   Atomic layer deposition of vanadium oxide on carbon nanotubes for high-power supercapacitor electrodes [J].
Boukhalfa, Sofiane ;
Evanoff, Kara ;
Yushin, Gleb .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (05) :6872-6879
[6]   Two-Step Electrochemical Intercalation and Oxidation of Graphite for the Mass Production of Graphene Oxide [J].
Cao, Jianyun ;
He, Pei ;
Mohammed, Mahdi A. ;
Zhao, Xin ;
Young, Robert J. ;
Derby, Brian ;
Kinloch, Ian A. ;
Dryfe, Robert A. W. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (48) :17446-17456
[7]   NASICON-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density [J].
Chen, Mingzhe ;
Hua, Weibo ;
Xiao, Jin ;
Cortiel, David ;
Chen, Weihua ;
Wang, Enhui ;
Hu, Zhe ;
Gu, Qinfen ;
Wang, Xiaolin ;
Indris, Sylvio ;
Chou, Shu-Lei ;
Dou, Shi-Xue .
NATURE COMMUNICATIONS, 2019, 10 (1)
[8]   High-Performance Sodium-Ion Pseudocapacitors Based on Hierarchically Porous Nanowire Composites [J].
Chen, Zheng ;
Augustyn, Veronica ;
Jia, Xilai ;
Xiao, Qiangfeng ;
Dunn, Bruce ;
Lu, Yunfeng .
ACS NANO, 2012, 6 (05) :4319-4327
[9]   Achieving high energy density and high power density with pseudocapacitive materials [J].
Choi, Christopher ;
Ashby, David S. ;
Butts, Danielle M. ;
DeBlock, Ryan H. ;
Wei, Qiulong ;
Lau, Jonathan ;
Dunn, Bruce .
NATURE REVIEWS MATERIALS, 2020, 5 (01) :5-19
[10]  
Chung WJ, 2013, NAT CHEM, V5, P518, DOI [10.1038/nchem.1624, 10.1038/NCHEM.1624]