Nonlinear Unmixing of Hyperspectral Data via Deep Autoencoder Networks

被引:129
作者
Wang, Mou [1 ,2 ,3 ]
Zhao, Min [1 ,2 ,3 ]
Chen, Jie [1 ,2 ,3 ]
Rahardja, Susanto [1 ,2 ,3 ]
机构
[1] Northwestern Polytech Univ, Sch Marine Sci & Technol, Xian 710072, Shaanxi, Peoples R China
[2] Minist Ind & Informat Technol, Key Lab Ocean Acoust & Sensing, Xian 710072, Shaanxi, Peoples R China
[3] Northwestern Polytech Univ, Dev Inst, Shenzhen 518057, Peoples R China
关键词
Autoencoder network; deep learning; hyperspectral imaging; nonlinear spectral unmixing;
D O I
10.1109/LGRS.2019.2900733
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Nonlinear spectral unmixing is an important and challenging problem in hyperspectral image processing. Classical nonlinear algorithms are usually derived based on specific assumptions on the nonlinearity. In recent years, deep learning shows its advantage in addressing general nonlinear problems. However, existing ways of using deep neural networks for unmixing are limited and restrictive. In this letter, we develop a novel blind hyperspectral unmixing scheme based on a deep autoencoder network. Both encoder and decoder of the network are carefully designed so that we can conveniently extract estimated endmembers and abundances simultaneously from the nonlinearly mixed data. Because an autoencoder is essentially an unsupervised algorithm, this scheme only relies on the current data and, therefore, does not require additional training. Experimental results validate the proposed scheme and show its superior performance over several existing algorithms.
引用
收藏
页码:1467 / 1471
页数:5
相关论文
共 50 条
[41]   Window Transformer Convolutional Autoencoder for Hyperspectral Sparse Unmixing [J].
Kong, Fanqiang ;
Zheng, Yuhan ;
Li, Dan ;
Li, Yunsong ;
Chen, Mengyue .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
[42]   Hyperspectral unmixing of autoencoder based on attention and total variation [J].
Wang, Ying ;
Zhang, Mingbo ;
Zuo, Fang .
SECOND INTERNATIONAL CONFERENCE ON OPTICS AND IMAGE PROCESSING (ICOIP 2022), 2022, 12328
[43]   DMAE-HU: A novel deep multitasking autoencoder for hybrid hyperspectral unmixing in remote sensing [J].
Aala, Suresh ;
Pavuluri, Prudhvi Krishna ;
Deshpande, Anuj ;
Sikhakolli, Sravan Kumar ;
Elumalai, Karthikeyan ;
Chinnadurai, Sunil ;
Panchakarla, Eswar ;
Sarker, Md. Abdul Latif ;
Han, Dong Seog .
ICT EXPRESS, 2025, 11 (02) :329-334
[44]   PIGMENT UNMIXING OF HYPERSPECTRAL IMAGES OF PAINTINGS USING DEEP NEURAL NETWORKS [J].
Rohani, Neda ;
Pouyet, Emeline ;
Walton, Marc ;
Cossairt, Oliver ;
Katsaggelos, Aggelos K. .
2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, :3217-3221
[45]   A SPECTRAL-SPATIAL ATTENTION AUTOENCODER NETWORK FOR HYPERSPECTRAL UNMIXING [J].
Wang, Jie ;
Xu, Jindong .
IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, :7519-7522
[46]   Gated Autoencoder Network for Spectral-Spatial Hyperspectral Unmixing [J].
Hua, Ziqiang ;
Li, Xiaorun ;
Jiang, Jianfeng ;
Zhao, Liaoying .
REMOTE SENSING, 2021, 13 (16)
[47]   UnDIP: Hyperspectral Unmixing Using Deep Image Prior [J].
Rasti, Behnood ;
Koirala, Bikram ;
Scheunders, Paul ;
Ghamisi, Pedram .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[48]   A Practical Approach for Hyperspectral Unmixing Using Deep Learning [J].
Vijayashekhar, S. S. ;
Deshpande, Vijay S. ;
Bhatt, Jignesh S. .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
[49]   Sparse Unmixing of Hyperspectral Data [J].
Iordache, Marian-Daniel ;
Bioucas-Dias, Jose M. ;
Plaza, Antonio .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2011, 49 (06) :2014-2039
[50]   Nonlinear Unmixing of Hyperspectral Data With Vector-Valued Kernel Functions [J].
Ammanouil, Rita ;
Ferrari, Andre ;
Richard, Cedric ;
Mathieu, Sandrine .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2017, 26 (01) :340-354