Path Planning of Mobile Robot Based on Genetic Algorithm with Predictive Operator and Dynamic Parameters

被引:0
作者
Ge, Yong [1 ]
Du, Meiyun [2 ]
Niu, Chengshui [2 ]
Ma, Qinglian [3 ]
Zhang, Yu-an [2 ]
机构
[1] Qinghai Univ, Sch Mech Engn, Xining 810016, Qinghai, Peoples R China
[2] Qinghai Univ, Dept Comp Technol & Applicat, Xining 810016, Qinghai, Peoples R China
[3] Univ Miyazaki, Interdisciplinary Grad Sch Agr & Engn, Miyazaki 8892192, Japan
来源
2017 13TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD) | 2017年
关键词
genetic algorithm; path planning; chromosome coding; prediction mechanism; dynamic parameter;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The standard genetic algorithm has achieved great success in solving various optimization problems, but in practical applications, owing to the lack of the use of specific knowledge, the results are not satisfactory. Aiming at the practical application of robot path planning, an improved genetic algorithm applied to robot path planning is proposed by adding a prediction mechanism method to improve the chromosome coding method and fitness function in standard genetic algorithm. In the process of introducing map feature information into the initial population, the evolutionary efficiency of the algorithm is improved. And the dynamic parameter setting strategy is adopted, which makes the algorithm have the ability to escape the local minimum and improve the convergence of the algorithm. The numerical simulation results show that the improved algorithm has a significant improvement in the convergence value and the convergence rate.
引用
收藏
页码:761 / 767
页数:7
相关论文
共 19 条
[1]   A Kohonen-like decomposition method for the Euclidean traveling salesman problem - KNIES_DECOMPOSE [J].
Aras, N ;
Altinel, IK ;
Oommen, J .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2003, 14 (04) :869-890
[2]  
Barraquand J., 1989, INT C ADV ROB 1991 R, V22, P1012
[3]   Realtime motion path generation using subtargets in a rapidly changing environment [J].
Bruijnen, Dennis ;
van Helvoort, Jeroen ;
de Molengraft, Rene van .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2007, 55 (06) :470-479
[4]   Path planning using potential fields for highly redundant manipulators [J].
Conkur, ES .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2005, 52 (2-3) :209-228
[5]  
Eberhart RC, 2001, IEEE C EVOL COMPUTAT, P81, DOI 10.1109/CEC.2001.934374
[6]  
Kennedy J., 1995, 1995 IEEE International Conference on Neural Networks Proceedings (Cat. No.95CH35828), P1942, DOI 10.1109/ICNN.1995.488968
[7]  
Kwang Y. Lee, 2005, TUTORIAL INTELLIGENT, P22, DOI [10.1109/IS-AP.2005.1599237, DOI 10.1109/IS-AP.2005.1599237]
[8]  
Liu Chengqing, 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065), P983, DOI 10.1109/ROBOT.2000.844728
[9]  
Mabrouk Mohamed H., 2008, IAENG International Journal of Computer Science, V35, P463
[10]   Solving the potential field local minimum problem using internal agent states [J].
Mabrouk, M. H. ;
McInnes, C. R. .
ROBOTICS AND AUTONOMOUS SYSTEMS, 2008, 56 (12) :1050-1060