On Riesz Decomposition for Super-Polyharmonic Functions in Rn

被引:0
作者
Tovstolis, Alexander V. [1 ]
机构
[1] Oklahoma State Univ, Stillwater, OK 74078 USA
关键词
Riesz potential; Riesz decomposition; Super-polyharmonic function; Polyharmonic function; Integral means;
D O I
10.1007/s11118-015-9474-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The classical Riesz Decomposition Theorem is a powerful tool describing superharmonic functions on compact subsets of . There is also the global version of this result dealing with functions superharmonic in and satisfying an additional condition. Recently, a generalization of this result for superbiharmonic functions in was obtained by (J. Anal. Math. 60, 113-133 2006). We consider its further generalization for m-superharmonic functions.
引用
收藏
页码:341 / 360
页数:20
相关论文
共 12 条
[1]  
[Anonymous], 1983, Oxford Mathematical Monographs
[2]  
ARMITAGE DH, 2001, SPRINGER MG MATH, P1, DOI 10.1007/978-1-4471-0233-5
[3]   Riesz extremal measures on the sphere for axis-supported external fields [J].
Brauchart, J. S. ;
Dragnev, P. D. ;
Saff, E. B. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 356 (02) :769-792
[4]   A Montel Type Result for Super-Polyharmonic Functions on RN [J].
Futamura, Toshihide ;
Kitaura, Keiji ;
Mizuta, Yoshihiro .
POTENTIAL ANALYSIS, 2011, 34 (01) :89-100
[5]  
Hayman W. K., 1976, London Mathematical Society Monographs, V9
[6]   REPRESENTATION AND UNIQUENESS THEOREMS FOR POLYHARMONIC FUNCTIONS [J].
HAYMAN, WK ;
KORENBLUM, B .
JOURNAL D ANALYSE MATHEMATIQUE, 1993, 60 :113-133
[7]  
Hormander L., 1994, PROGR MATH, V127
[8]   Spherical means and Riesz decomposition for superbiharmonic functions [J].
Kitaura, Keiji ;
Mizuta, Yoshihiro .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2006, 58 (02) :521-533
[9]  
Landkof N.S., 1972, FDN MODERN POTENTIAL
[10]  
Mizuta Y., 1996, GAKUTO INT SERIES, V6