Backlund transformations and the Atiyah-Ward ansatz for non-commutative anti-self-dual Yang-Mills equations

被引:12
作者
Gilson, Claire R. [2 ]
Hamanaka, Masashi [1 ]
Nimmo, Jonathan J. C. [2 ]
机构
[1] Nagoya Univ, Dept Math, Nagoya, Aichi 4648602, Japan
[2] Univ Glasgow, Dept Math, Glasgow G12 8QW, Lanark, Scotland
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2009年 / 465卷 / 2108期
关键词
non-commutative integrable systems; anti-self-dual Yang-Mills equation; quasi-determinant solutions; Atiyah-Ward ansatz; Penrose-Ward transformation; QUASIDETERMINANT SOLUTIONS; DARBOUX TRANSFORMATIONS; INTEGRABLE SYSTEMS; KP HIERARCHY; FIELD-THEORY; INSTANTONS; DETERMINANTS; CONSTRUCTION;
D O I
10.1098/rspa.2008.0515
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present Backlund transformations for the non-commutative anti-self-dual Yang Mills equation where the gauge group is G = GL(2), and use it to generate a series of exact solutions from a simple seed solution. The solutions generated by this approach are represented in terms of quasi-determinants. We also explain the origins of all the ingredients of the Backlund transformations within the framework of non-commutative twistor theory. In particular, we show that the generated solutions belong to a non-commutative version of the Atiyah-Ward ansatz.
引用
收藏
页码:2613 / 2632
页数:20
相关论文
共 60 条
[51]   On a non-Abelian Hirota-Miwa equation [J].
Nimmo, Jonathan J. C. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (18) :5053-5065
[52]   Non-local continuity equations and binary Darboux transformation of noncommutative (anti) self-dual Yang-Mills equations [J].
Saleem, U. ;
Hassan, M. ;
Siddiq, M. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (19) :5205-5217
[53]   Chains of Darboux transformations for the matrix Schrodinger equation [J].
Samsonov, BF ;
Pecheritsin, AA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (01) :239-250
[54]   Bilinear form approach to the self-dual Yang-Mills equations and integrable systems in (2+1)-dimension [J].
Sasa, N ;
Ohta, Y ;
Matsukidaira, J .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1998, 67 (01) :83-86
[55]   Quantum field theory on noncommutative spaces [J].
Szabo, RJ .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2003, 378 (04) :207-299
[56]   Anti-self-dual Yang-Mills equations on noncommutative space-time [J].
Takasaki, K .
JOURNAL OF GEOMETRY AND PHYSICS, 2001, 37 (04) :291-306
[57]  
TAMASSIA L, 2005, THESIS U PAVIA ITALY
[58]  
Wang N, 2004, J PHYS SOC JPN, V73, P1689, DOI 10.1143/JPSP.73.1689
[59]  
Wilczek F., 1977, QUARK CONFINEMENT FI, P211
[60]   CONDITION OF SELF-DUALITY FOR SU(2) GAUGE FIELDS ON EUCLIDEAN 4-DIMENSIONAL SPACE [J].
YANG, CN .
PHYSICAL REVIEW LETTERS, 1977, 38 (24) :1377-1379