Modelling of nano-filler reinforcement, filler strength and experimental results of nanosilica composites made by a precipitation method

被引:6
作者
Claiden, P. [1 ]
Knowles, G. [1 ]
Liu, F. [2 ]
Wei, Q. [2 ]
Li, X. [2 ]
Aw, C. J. [3 ]
Ren, X. J. [3 ]
机构
[1] Sino British Coll SBC USST, Sch Engn, Shanghai 200031, Peoples R China
[2] Univ Shanghai Sci & Technol, Sch Sci & Engn, Shanghai 200093, Peoples R China
[3] Liverpool John Moores Univ, Sch Engn, Liverpool L3 3AF, Merseyside, England
关键词
Silica/PVC; Filler-filler bond modulus; Effective composite modulus; Cluster-Cluster Aggregation (CCA) model; MECHANICAL-PROPERTIES; MASS-TRANSFER; YIELD-STRESS; POLYMER; NANOCOMPOSITES; NANOPARTICLES; ELASTOMERS; MEMBRANES; STIFFNESS; BEHAVIOR;
D O I
10.1016/j.commatsci.2014.01.041
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, a method of producing nanocomposite (silica/PVC) from a mixture of polymer solvent and particulate suspension is presented. This method can be used to produce nanocomposites from a wide range of polymer and particulate materials. An analytical methodology together with a model of the polymer chain-nanoparticle interface is successfully used to estimate filler-filler bond modulus and used in establishing a model for predicting the effective composite modulus. This provides a verifiable link between theory and experimental results based on compression testing. Results from the model are also compared with data obtained from the literature. Along with understanding of reinforcement from the aggregated-nanofiller comes the possibility to control its size and shape. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:27 / 34
页数:8
相关论文
共 36 条
[1]   Polyimide-silica hybrids: Spectroscopy, morphology and mechanical properties [J].
Abbate, M ;
Musto, P ;
Ragosta, G ;
Scarinzi, G ;
Mascia, L .
MACROMOLECULAR SYMPOSIA, 2004, 218 :211-220
[2]  
Ashby M.F., 2008, ENG MAT, V1, P38
[3]   Multiscale Filler Structure in Simplified Industrial Nanocomposite Silica/SBR Systems Studied by SAXS and TEM [J].
Baeza, Guilhem P. ;
Genix, Anne-Caroline ;
Degrandcourt, Christophe ;
Petitjean, Laurent ;
Gummel, Jeremie ;
Couty, Marc ;
Oberdisse, Julian .
MACROMOLECULES, 2013, 46 (01) :317-329
[4]   Micromechanics-based modelling of stiffness and yield stress for silica/polymer nanocomposites [J].
Boutaleb, S. ;
Zairi, F. ;
Mesbah, A. ;
Nait-Abdelaziz, M. ;
Gloaguen, J. M. ;
Boukharouba, T. ;
Lefebvre, J. M. .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2009, 46 (7-8) :1716-1726
[5]   AN IMPROVED MODEL FOR MASS-TRANSFER DURING THE FORMATION OF POLYMERIC MEMBRANES BY THE IMMERSION-PRECIPITATION PROCESS [J].
CHENG, LP ;
SOH, YS ;
DWAN, AH ;
GRYTE, CC .
JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 1994, 32 (08) :1413-1425
[6]   Formation of crystalline EVAL membranes by controlled mass transfer process in water-DMSO-EVAL copolymer systems [J].
Cheng, LP ;
Young, TH ;
You, WM .
JOURNAL OF MEMBRANE SCIENCE, 1998, 145 (01) :77-90
[7]  
Ching Y., 2013, J NANOMATER, V1, P1
[8]   A molecular dynamics simulation study of inclusion size effect on polymeric nanocomposites [J].
Cho, J. ;
Sun, C. T. .
COMPUTATIONAL MATERIALS SCIENCE, 2007, 41 (01) :54-62
[9]  
Dobrescu G, 2008, REV ROUM CHIM, V53, P217
[10]  
Doi M., 1986, THEORY POLYM DYNAMIC