Multi-scale study of the integrated use of the carbohydrate fractions of sugarcane bagasse for ethanol and xylitol production

被引:39
作者
Antunes, Felipe A. F. [1 ]
Thome, Lucas C. [1 ]
Santos, Julio C. [1 ]
Ingle, Avinash P. [1 ]
Costa, Cassiano B. [2 ]
Dos Anjos, Virgilio [2 ]
Bell, Maria J., V [2 ]
Rosa, Carlos A. [3 ]
Da Silva, Silvio S. [1 ]
机构
[1] Univ Sao Paulo, Engn Sch Lorena, Dept Biotechnol, Area 1,Estr Municipal Campinho S-N, BR-12602810 Lorena, SP, Brazil
[2] Univ Fed Juiz de Fora, Dept Phys, Mat Engn & Spect Grp, Univ Campus SN, BR-36036330 Juiz De Fora, MG, Brazil
[3] Univ Fed Minas Gerais, Inst Biol Sci, Av Pres Antonio Carlos 6627, BR-31270901 Belo Horizonte, MG, Brazil
基金
巴西圣保罗研究基金会;
关键词
Sugarcane bagasse; Sequential processes; Bioethanol; Xylitol; SSSCF; ENZYMATIC-HYDROLYSIS; PRETREATMENT; XYLOSE; FERMENTATION; CELLULOSE; FTIR; WOOD; HEMICELLULOSE; CHEMISTRY; SPECTRUM;
D O I
10.1016/j.renene.2020.08.020
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A multi-scale study of sugarcane bagasse (SB) pretreatments and integrated developments for use of its carbohydrates portions for ethanol and xylitol production, are presented. In a first approach, after SB acid hydrolysis, hemicellulosic ethanol production was investigated, verifying ethanol yield of 0.31 g/g and volumetric productivity (Q(P)) of 0.1 g/L.h. Xylitol production was also studied, showing xylitol yield and Q(P) of 0.61 g/g and 0.38 g/L.h, respectively. Thus, remaining cellulignin from acid pretreatment was submitted to alkaline hydrolysis followed by Semi-Simultaneous Saccharification and Co-fermentation in sequential processes to ethanol production, by using mixture of SB hemicellulosic and enzymatic hydrolysate as carbon source, verifying Q(P) of 0.6 g/L.h. Moreover, a biomass multi-scale study was conducted by analysis of MEV, X-Ray, FTIR and Ramman Spectroscopy, verifying clear changes in SB structure along each pretreatment. These novel approaches indicated the potential of these integrated use of SB carbohydrates portion for bioproducts obtaining from SB in sustainable processes. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1343 / 1355
页数:13
相关论文
共 42 条
[31]   Use of immobilized Candida yeast cells for xylitol production from sugarcane bagasse hydrolysate -: Cell immobilization conditions [J].
Carvalho, W ;
Silva, SS ;
Converti, A ;
Vitolo, M ;
Felipe, MGA ;
Roberto, IC ;
Silva, MB ;
Mancilha, IM .
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2002, 98 (1-9) :489-496
[32]   Ethanol production from sugarcane bagasse by means of on-site produced and commercial enzymes; a comparative study [J].
Nasim, Shaibani ;
Soheila, Yaghmaei ;
Mohammad Reza, Andalibi ;
Ghazvini, Saba .
PERIODICA POLYTECHNICA-CHEMICAL ENGINEERING, 2012, 56 (02) :91-96
[33]   Integrated versus stand-alone second generation ethanol production from sugarcane bagasse and trash [J].
Dias, Marina O. S. ;
Junqueira, Tassia L. ;
Cavalett, Otavio ;
Cunha, Marcelo P. ;
Jesus, Charles D. F. ;
Rossell, Carlos E. V. ;
Maciel Filho, Rubens ;
Bonomi, Antonio .
BIORESOURCE TECHNOLOGY, 2012, 103 (01) :152-161
[34]   Comparative study on ethanol production from pretreated sugarcane bagasse using immobilized Saccharomyces cerevisiae on various matrices [J].
Singh, Anita ;
Sharma, Punita ;
Saran, Alok Kumar ;
Singh, Namita ;
Bishnoi, Narsi R. .
RENEWABLE ENERGY, 2013, 50 :488-493
[35]   Improved co-production of ethanol and xylitol from low-temperature aqueous ammonia pretreated sugarcane bagasse using two-stage high solids enzymatic hydrolysis and Candida tropicalis [J].
Raj, Kanak ;
Krishnan, Chandraraj .
RENEWABLE ENERGY, 2020, 153 :392-403
[36]   A study on xylitol production from sugarcane bagasse hemicellulosic hydrolysate by Ca-alginate entrapped cells in a stirred tank reactor [J].
Carvalho, W ;
Santos, JC ;
Canilha, L ;
Silva, JBAE ;
Felipe, MGA ;
Mancilha, IM ;
Silva, SS .
PROCESS BIOCHEMISTRY, 2004, 39 (12) :2135-2141
[37]   Alkaline-sulfite pretreatment and use of surfactants during enzymatic hydrolysis to enhance ethanol production from sugarcane bagasse [J].
Jéssica Faria Mesquita ;
André Ferraz ;
André Aguiar .
Bioprocess and Biosystems Engineering, 2016, 39 :441-448
[38]   Comparative material balances and preliminary technical analysis of the pilot scale sugarcane bagasse alkaline pretreatment to 2G ethanol production [J].
Nakanishi, S. C. ;
Nascimento, V. M. ;
Rabelo, S. C. ;
Sampaio, I. L. M. ;
Junqueira, T. L. ;
Rocha, G. J. M. .
INDUSTRIAL CROPS AND PRODUCTS, 2018, 120 :187-197
[39]   Effect of chemical factors on integrated fungal fermentation of sugarcane bagasse for ethanol production by a white-rot fungus, Phlebia sp MG-60 [J].
Le Duy Khuong ;
Kondo, Ryuichiro ;
De Leon, Rizalinda ;
To Kim Anh ;
Meguro, Sadatoshi ;
Shimizu, Kuniyoshi ;
Kamei, Ichiro .
BIORESOURCE TECHNOLOGY, 2014, 167 :33-40
[40]   Process design and economic evaluation of integrated, multi-product biorefineries for the co-production of bio-energy, succinic acid, and polyhydroxybutyrate (PHB) from sugarcane bagasse and trash lignocelluloses [J].
Nieder-Heitmann, Mieke ;
Haigh, Kathleen ;
Gorgens, Johann F. .
BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR, 2019, 13 (03) :599-617