Arithmetic Spectral Transitions for the Maryland Model

被引:34
作者
Jitomirskaya, Svetlana [1 ]
Liu, Wencai [2 ]
机构
[1] Univ Calif Irvine, Dept Math, Room 540D, Irvine, CA 92697 USA
[2] Univ Calif Irvine, Dept Math, Room 425, Irvine, CA 92697 USA
基金
美国国家科学基金会;
关键词
PERIODIC SCHRODINGER-OPERATORS; EXACTLY SOLVABLE MODEL; LYAPUNOV EXPONENT; LOCALIZATION; COCYCLES; ABSENCE; STATES;
D O I
10.1002/cpa.21688
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a precise description of spectra of the Maryland model for all values of parameters. We introduce an arithmetically defined index delta (alpha, theta) and show that for alpha epsilon Q, and Since sigma(ac)(h(lambda,alpha,theta)) = Oover dot, this gives a complete description of the spectral decomposition for all values of parameters lambda, alpha, and theta, making it the first case of a family where arithmetic spectral transition is described without any parameter exclusion. The set of eigenvalues can be explicitly identified for all parameters, using the quantization condition. We also establish, for the first time for this or any other model, a quantization condition for singular continuous spectrum (an arithmetically defined measure zero set that supports singular continuous measures) for all parameters. (C) 2017 Wiley Periodicals, Inc.
引用
收藏
页码:1025 / 1051
页数:27
相关论文
共 27 条
  • [1] Avila A, 2010, J EUR MATH SOC, V12, P93
  • [2] Avila A., 2015, ARXIV151203124MATHSP
  • [3] Global theory of one-frequency Schrodinger operators
    Avila, Artur
    [J]. ACTA MATHEMATICA, 2015, 215 (01) : 1 - 54
  • [4] Monotonic cocycles
    Avila, Artur
    Krikorian, Raphael
    [J]. INVENTIONES MATHEMATICAE, 2015, 202 (01) : 271 - 331
  • [5] Complex one-frequency cocycles
    Avila, Artur
    Jitomirskaya, Svetlana
    Sadel, Christian
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2014, 16 (09) : 1915 - 1935
  • [6] The Ten Martini Problem
    Avila, Artur
    Jitomirskaya, Svetlana
    [J]. ANNALS OF MATHEMATICS, 2009, 170 (01) : 303 - 342
  • [7] ALMOST PERIODIC SCHRODINGER-OPERATORS .2. THE INTEGRATED DENSITY OF STATES
    AVRON, J
    SIMON, B
    [J]. DUKE MATHEMATICAL JOURNAL, 1983, 50 (01) : 369 - 391
  • [8] LOCALIZATION IN NU-DIMENSIONAL INCOMMENSURATE STRUCTURES
    BELLISSARD, J
    LIMA, R
    SCOPPOLA, E
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1983, 88 (04) : 465 - 477
  • [9] INCOMMENSURABILITY IN AN EXACTLY-SOLUBLE QUANTAL AND CLASSICAL-MODEL FOR A KICKED ROTATOR
    BERRY, MV
    [J]. PHYSICA D, 1984, 10 (03): : 369 - 378
  • [10] Continuity of the Lyapunov exponent for quasiperiodic operators with analytic potential
    Bourgain, J
    Jitomirskaya, S
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2002, 108 (5-6) : 1203 - 1218