A variational principle for actions on symmetric symplectic spaces

被引:11
作者
Rios, PD [1 ]
de Almeida, AO [1 ]
机构
[1] Ctr Brasileiro Pesquisas Fis, BR-22290 Rio De Janeiro, Brazil
关键词
symplectic geometry; Hamiltonian systems;
D O I
10.1016/j.geomphys.2003.12.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a definition of generating functions of canonical relations, which are real functions on symmetric symplectic spaces, discussing some conditions for the presence of caustics. We show how the actions compose by a neat geometrical formula and are connected to the hamiltonians via a geometrically simple variational principle which determines the classical trajectories, discussing the temporal evolution of such "extended hamiltonians" in terms of Hamilton-Jacobi-type equations. Simplest spaces are treated explicitly. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:404 / 441
页数:38
相关论文
共 48 条
  • [1] Abraham R., 1978, Foundations of mechanics
  • [2] [Anonymous], 1974, Reports on Mathematical Physics, V5, P121, DOI 10.1016/0034-4877(74)90021-4
  • [3] Arnold VI, 2013, Mathematical methods of classical mechanics
  • [4] BATES S, 1995, BERKELEY MATH LECT N, V8
  • [5] SEMICLASSICAL MECHANICS IN PHASE SPACE - STUDY OF WIGNERS FUNCTION
    BERRY, MV
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1977, 287 (1343): : 237 - 271
  • [6] BIELIAVSKY P, MATHQA0010004
  • [7] CHAPERON M, 1984, CR ACAD SCI I-MATH, V298, P293
  • [8] Critical points of quasi-functions and generating families of Legendrian manifolds
    Chekanov, YV
    [J]. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1996, 30 (02) : 118 - 128
  • [9] Choquet-Bruhat Y., 1982, ANAL MANIFOLDS PHYS
  • [10] DEALMEIDA AMO, 1990, P R SOC-MATH PHYS SC, V431, P403