Super-resolution lightwave tomography of electronic bands in quantum materials

被引:47
作者
Borsch, M. [1 ]
Schmid, C. P. [2 ]
Weigl, L. [2 ]
Schlauderer, S. [2 ]
Hofmann, N. [2 ]
Lange, C. [2 ,4 ]
Steiner, J. T. [3 ]
Koch, S. W. [3 ]
Huber, R. [2 ]
Kira, M. [1 ]
机构
[1] Univ Michigan, Dept Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
[2] Univ Regensburg, Dept Phys, Regensburg, Germany
[3] Univ Marburg, Dept Phys, Marburg, Germany
[4] Tech Univ Dortmund, Fak Phys, Otto Hahn Str 4, D-44227 Dortmund, Germany
关键词
D O I
10.1126/science.abe2112
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Searching for quantum functionalities requires access to the electronic structure, constituting the foundation of exquisite spin-valley-electronic, topological, and many-body effects. All-optical band-structure reconstruction could directly connect electronic structure with the coveted quantum phenomena if strong lightwaves transported localized electrons within preselected bands. Here, we demonstrate that harmonic sideband (HSB) generation in monolayer tungsten diselenide creates distinct electronic interference combs in momentum space. Locating these momentum combs in spectroscopy enables super-resolution tomography of key band-structure details in situ. We experimentally tuned the optical-driver frequency by a full octave and show that the predicted super-resolution manifests in a critical intensity and frequency dependence of HSBs. Our concept offers a practical, all-optical, fully three-dimensional tomography of electronic structure even in microscopically small quantum materials, band by band.
引用
收藏
页码:1204 / 1207
页数:4
相关论文
共 31 条
  • [1] Quantum droplets of electrons and holes
    Almand-Hunter, A. E.
    Li, H.
    Cundiff, S. T.
    Mootz, M.
    Kira, M.
    Koch, S. W.
    [J]. NATURE, 2014, 506 (7489) : 471 - 475
  • [2] Dynamical Birefringence: Electron-Hole Recollisions as Probes of Berry Curvature
    Banks, Hunter B.
    Wu, Qile
    Valovcin, Darren C.
    Mack, Shawn
    Gossard, Arthur C.
    Pfeiffer, Loren
    Liu, Ren-Bao
    Sherwin, Mark S.
    [J]. PHYSICAL REVIEW X, 2017, 7 (04):
  • [3] Bloch F., 1929, Z PHYS, V52, P555, DOI [DOI 10.1007/BF01339455, 10.1007/BF01339455]
  • [4] Borsch, 2020, DATA FIGURES SUPER R
  • [5] Unconventional superconductivity in magic-angle graphene superlattices
    Cao, Yuan
    Fatemi, Valla
    Fang, Shiang
    Watanabe, Kenji
    Taniguchi, Takashi
    Kaxiras, Efthimios
    Jarillo-Herrero, Pablo
    [J]. NATURE, 2018, 556 (7699) : 43 - +
  • [6] Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3
    Chen, Y. L.
    Analytis, J. G.
    Chu, J. -H.
    Liu, Z. K.
    Mo, S. -K.
    Qi, X. L.
    Zhang, H. J.
    Lu, D. H.
    Dai, X.
    Fang, Z.
    Zhang, S. C.
    Fisher, I. R.
    Hussain, Z.
    Shen, Z. -X.
    [J]. SCIENCE, 2009, 325 (5937) : 178 - 181
  • [7] Chin AH, 2001, PHYS REV LETT, V86, P3292, DOI 10.1103/PhysRevLett86.3292
  • [8] Geometric phase from Aharonov-Bohm to Pancharatnam-Berry and beyond
    Cohen, Eliahu
    Larocque, Hugo
    Bouchard, Frederic
    Nejadsattari, Farshad
    Gefen, Yuval
    Karimi, Ebrahim
    [J]. NATURE REVIEWS PHYSICS, 2019, 1 (07) : 437 - 449
  • [9] Van der Waals heterostructures
    Geim, A. K.
    Grigorieva, I. V.
    [J]. NATURE, 2013, 499 (7459) : 419 - 425
  • [10] Ghimire S, 2011, NAT PHYS, V7, P138, DOI [10.1038/nphys1847, 10.1038/NPHYS1847]