Antioxidant Responses and NRF2 in Synergistic Developmental Toxicity of PAHs in Zebrafish

被引:106
|
作者
Timme-Laragy, Alicia R.
Van Tiem, Lindsey A.
Linney, Elwood A. [2 ]
Di Giulio, Richard T. [1 ]
机构
[1] Duke Univ, Nicholas Sch Environm, Integrated Toxicol & Environm Hlth Program, Levine Sci Res Ctr, Durham, NC 27708 USA
[2] Duke Univ, Med Ctr, Dept Mol Genet & Microbiol, Durham, NC 27710 USA
基金
美国国家环境保护局;
关键词
PAH; NRF2; redox; ROS; embryonic development; glutathione; KILLIFISH FUNDULUS-HETEROCLITUS; OXIDATIVE STRESS; HYDROCARBON RECEPTOR; GENE-EXPRESSION; REACTIVE OXYGEN; NRF2-KEAP1; PATHWAY; PHASE-I; ELEMENT; GLUTATHIONE; ACTIVATION;
D O I
10.1093/toxsci/kfp038
中图分类号
R99 [毒物学(毒理学)];
学科分类号
100405 ;
摘要
Early piscine life stages are sensitive to polycyclic aromatic hydrocarbon (PAH) exposure, which can cause pericardial effusion and craniofacial malformations. We previously reported that certain combinations of PAHs cause synergistic developmental toxicity, as observed with coexposure to the aryl hydrocarbon receptor agonist beta-naphthoflavone (BNF) and cytochrome P4501A inhibitor alpha-naphthoflavone (ANF). Herein, we hypothesized that oxidative stress is a component of this toxicity. We examined induction of antioxidant genes in zebrafish embryos (Danio rerio) exposed to BNF or ANF individually, a BNF + ANF combination, and a prooxidant positive control, tert-butylhydroperoxide (tBOOH). We measured total glutathione (GSH) and attempted to modulate deformities using the GSH synthesis inhibitor L-buthionine (S,R)-sulfoximine (BSO) and increase GSH pools with N-acetyl cysteine (NAC). In addition, we used a morpholino to knockdown expression of the antioxidant response element transcription factor NRF2 to determine if this would alter gene expression or increase deformity severity. BNF + ANF coexposure significantly increased expressions of superoxide dismutase 1 and 2, glutathione peroxidase 1, pi class glutathione-s-transferase, and glutamate cysteine-ligase to a greater extent than tBOOH, BNF, or ANF alone. BSO pretreatment decreased some GSH levels, but did not worsen deformities, nor did NAC diminish toxicity. Knockdown of NRF2 increased mortality following tBOOH challenge, prevented significant upregulation of antioxidant genes following both tBOOH and BNF + ANF exposures, and exacerbated BNF + ANF-related deformities. Collectively, these findings demonstrate that antioxidant responses are a component of PAH synergistic developmental toxicity and that NRF2 is protective against prooxidant and PAH challenges during development.
引用
收藏
页码:217 / 227
页数:11
相关论文
共 50 条
  • [31] Reprint of: Nrf2/ARE-mediated antioxidant actions of pro-electrophilic drugs
    Satoh, Takumi
    McKercher, Scott R.
    Lipton, Stuart A.
    FREE RADICAL BIOLOGY AND MEDICINE, 2014, 66 : 45 - 57
  • [32] Phenothiazines: Nrf2 activation and antioxidant effects
    Egbujor, Melford C.
    Tucci, Paolo
    Buttari, Brigitta
    Nwobodo, David C.
    Marini, Pietro
    Saso, Luciano
    JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, 2024, 38 (03)
  • [33] Activation of the NRF2 antioxidant program generates an imbalance in central carbon metabolism in cancer
    Sayin, Volkan I.
    LeBoeuf, Sarah E.
    Singh, Simranjit X.
    Davidson, Shawn M.
    Biancur, Douglas
    Guzelhan, Betul S.
    Alvarez, Samantha W.
    Wu, Warren L.
    Karakousi, Triantafyllia R.
    Zavitsanou, Anastasia Maria
    Ubriaco, Julian
    Muir, Alexander
    Karagiannis, Dimitris
    Morris, Patrick J.
    Thomas, Craig J.
    Possemato, Richard
    Vander Heiden, Matthew G.
    Papagiannakopoulos, Thales
    ELIFE, 2017, 6
  • [34] The Potential Role of Major Argan Oil Compounds as Nrf2 Regulators and Their Antioxidant Effects
    El Kebbaj, Riad
    Bouchab, Habiba
    Tahri-Joutey, Mounia
    Rabbaa, Soufiane
    Limami, Youness
    Nasser, Boubker
    Egbujor, Melford C.
    Tucci, Paolo
    Andreoletti, Pierre
    Saso, Luciano
    Cherkaoui-Malki, Mustapha
    ANTIOXIDANTS, 2024, 13 (03)
  • [35] Environmental Electrophile-Mediated Toxicity in Mice Lacking Nrf2, CSE, or Both
    Akiyama, Masahiro
    Unoki, Takamitsu
    Shinkai, Yasuhiro
    Ishii, Isao
    Ida, Tomoaki
    Akaike, Takaaki
    Yamamoto, Masayuki
    Kumagai, Yoshito
    ENVIRONMENTAL HEALTH PERSPECTIVES, 2019, 127 (06)
  • [36] Silencing of Nrf2 in Litopenaeus vannamei, decreased the antioxidant capacity, and increased apoptosis and autophagy
    Huang, Yongxiong
    Li, Qi
    Yuan, Yunhao
    Zhang, Zhiqiang
    Jiang, Baijian
    Yang, Shiping
    Jian, Jichang
    FISH & SHELLFISH IMMUNOLOGY, 2022, 122 : 257 - 267
  • [37] Loss of ubiquitinated protein autophagy is compensated by persistent cnc/NFE2L2/Nrf2 antioxidant responses
    Bhattacharjee, Arindam
    Urmosi, Adel
    Jipa, Andras
    Kovacs, Levente
    Deak, Peter
    Szabo, Aron
    Juhasz, Gabor
    AUTOPHAGY, 2022, 18 (10) : 2385 - 2396
  • [38] Modulation of NF-κB and Nrf2 control of inflammatory responses in FHs 74 Int cell line is tocopherol isoform-specific
    Elisia, Ingrid
    Kitts, David D.
    AMERICAN JOURNAL OF PHYSIOLOGY-GASTROINTESTINAL AND LIVER PHYSIOLOGY, 2013, 305 (12): : G940 - G949
  • [39] Upregulating Nrf2-dependent antioxidant defenses in Pacific oysters Crassostrea gigas: Investigating the Nrf2/Keapl pathway in bivalves
    Danielli, Naissa Maria
    Trevisan, Rafael
    Mello, Danielle Ferraz
    Fischer, Kelvis
    Deconto, Vanessa Schadeck
    Acosta, Daiane da Silva
    Bianchini, Adalto
    Dias Bainy, Afonso Celso
    Dafre, Alcir Luiz
    COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY C-TOXICOLOGY & PHARMACOLOGY, 2017, 195 : 16 - 26
  • [40] Genome-wide identification and analysis of Nrf2 binding sites - Antioxidant response elements in zebrafish
    Raghunath, Azhwar
    Nagarajan, Raju
    Sundarraj, Kiruthika
    Panneerselvam, Lakshmikanthan
    Perumal, Ekambaram
    TOXICOLOGY AND APPLIED PHARMACOLOGY, 2018, 360 : 236 - 248