Differential inclusions in the Almgren sense on unbounded domains

被引:0
作者
Henderson, Johnny [1 ]
Ouahab, Abdelghani [2 ]
机构
[1] Baylor Univ, Dept Math, Waco, TX 76798 USA
[2] Sidi Bel Abbes Univ, Math Lab, Sidi Bel Abbes 22000, Algeria
关键词
differential inclusions; multifunctions in the Almgren sense; diagonalization method; VALUED FUNCTIONS; RECTIFIABLE CURRENTS; REGULARITY; THEOREM;
D O I
10.4064/ap110-1-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the existence of solutions of differential inclusions on a half-line. Our results are based on an approximation method combined with a diagonalization method.
引用
收藏
页码:91 / 99
页数:9
相关论文
共 10 条
[1]  
Agarwal R.P., 2001, Infinite interval problems for differential, difference and integral equations
[2]  
ALMGREN FJ, 1983, ANN MATH STUD, P243
[3]  
Almgren Jr F. J., 2000, World Scientific Monograph Series in Mathematics, V1
[4]   Regular selections for multiple-valued functions [J].
De Lellis, Camillo ;
Grisanti, Carlo Romano ;
Tilli, Paolo .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2004, 183 (01) :79-95
[5]   Q-Valued Functions Revisited [J].
De Lellis, Camillo ;
Spadaro, Emanuele Nunzio .
MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 211 (991) :1-+
[6]   Regularity of Dirichlet nearly minimizing multiple-valued functions [J].
Goblet, Jordan ;
Zhu, Wei .
JOURNAL OF GEOMETRIC ANALYSIS, 2008, 18 (03) :765-794
[7]  
Goblet J, 2006, ANN ACAD SCI FENN-M, V31, P297
[8]  
Goblet J, 2009, HOUSTON J MATH, V35, P223
[9]   A Peano Type Theorem for a Class of Nonconvex-Valued Differential Inclusions [J].
Goblet, Jordan .
SET-VALUED ANALYSIS, 2008, 16 (7-8) :913-921
[10]   A NEW PROOF OF THE CLOSURE THEOREM FOR INTEGRAL CURRENTS [J].
SOLOMON, B .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1984, 33 (03) :393-418