Rotating black holes in metric-affine gravity

被引:26
作者
Baekler, Peter
Hehl, Friedrich W.
机构
[1] Univ Appl Sci, Fachbereich Medien, Fachhsch Dusseldorf, D-40474 Dusseldorf, Germany
[2] Univ Cologne, Inst Theoret Phys, D-50923 Cologne, Germany
[3] Univ Missouri, Dept Phys & Astron, Columbia, MO 65211 USA
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS D | 2006年 / 15卷 / 05期
关键词
metric-affine gravity; prolongation; exact solutions; Kerr-de Sitter metric; torsion; nonmetricity;
D O I
10.1142/S0218271806008589
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Within the framework of metric-affine gravity (MAG, metric and an independent linear connection constitute space-time), we find, for a specific gravitational Lagrangian and by using prolongation techniques, a stationary axially symmetric exact solution of the vacuum field equations. This black hole solution embodies a Kerr-de Sitter metric and the post-Riemannian structures of torsion and nonmetricity. The solution is characterized by mass, angular momentum, and shear charge, the latter of which is a measure for violating Lorentz invariance.
引用
收藏
页码:635 / 668
页数:34
相关论文
共 66 条
[21]  
Gronwald F., 1996, Quantum Gravity. International School of Cosmology and Gravitation XIV Course. 80th Birthday Dedication to Peter G. Bergmann, P148
[23]  
Hehl F W, 2003, FDN CLASSICAL ELECTR
[24]   METRIC-AFFINE VARIATIONAL PRINCIPLES IN GENERAL RELATIVITY .1. RIEMANNIAN SPACE-TIME [J].
HEHL, FW ;
KERLICK, GD .
GENERAL RELATIVITY AND GRAVITATION, 1978, 9 (08) :691-710
[25]   Metric-affine gauge theory of gravity - II. Exact solutions [J].
Hehl, FW ;
Macias, A .
INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 1999, 8 (04) :399-416
[26]   METRIC-AFFINE GAUGE-THEORY OF GRAVITY - FIELD-EQUATIONS, NOETHER IDENTITIES, WORLD SPINORS, AND BREAKING OF DILATION INVARIANCE [J].
HEHL, FW ;
MCCREA, JD ;
MIELKE, EW ;
NEEMAN, Y .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1995, 258 (1-2) :1-171
[27]   Einstein-aether theory, violation of Lorentz invariance, and metric-affine gravity [J].
Heinicke, C ;
Baekler, P ;
Hehl, FW .
PHYSICAL REVIEW D, 2005, 72 (02) :1-18
[28]  
HEINICKE C, 2003, COMPUTER ALGEBRA HDB
[29]  
Ho JK, 1997, CHINESE J PHYS, V35, P640