Dose-volume histogram prediction using density estimation

被引:41
作者
Munter, Johanna Skarpman [1 ]
Sjolund, Jens [1 ,2 ,3 ]
机构
[1] Elekta Instrument AB, SE-10393 Stockholm, Sweden
[2] Linkoping Univ, Ctr Med Image Sci & Visualizat CMIV, S-58183 Linkoping, Sweden
[3] Linkoping Univ, Dept Biomed Engn, S-58183 Linkoping, Sweden
基金
瑞典研究理事会;
关键词
DVH prediction; machine learning; treatment planning; kernel density estimation; RADIATION-THERAPY; QUALITY;
D O I
10.1088/0031-9155/60/17/6923
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Knowledge of what dose-volume histograms can be expected for a previously unseen patient could increase consistency and quality in radiotherapy treatment planning. We propose a machine learning method that uses previous treatment plans to predict such dose-volume histograms. The key to the approach is the framing of dose-volume histograms in a probabilistic setting. The training consists of estimating, from the patients in the training set, the joint probability distribution of some predictive features and the dose. The joint distribution immediately provides an estimate of the conditional probability of the dose given the values of the predictive features. The prediction consists of estimating, from the new patient, the distribution of the predictive features and marginalizing the conditional probability from the training over this. Integrating the resulting probability distribution for the dose yields an estimate of the dose-volume histogram. To illustrate how the proposed method relates to previously proposed methods, we use the signed distance to the target boundary as a single predictive feature. As a proof-of-concept, we predicted dose-volume histograms for the brainstems of 22 acoustic schwannoma patients treated with stereotactic radiosurgery, and for the lungs of 9 lung cancer patients treated with stereotactic body radiation therapy. Comparing with two previous attempts at dose-volume histogram prediction we find that, given the same input data, the predictions are similar. In summary, we propose a method for dose-volume histogram prediction that exploits the intrinsic probabilistic properties of dose-volume histograms. We argue that the proposed method makes up for some deficiencies in previously proposed methods, thereby potentially increasing ease of use, flexibility and ability to perform well with small amounts of training data.
引用
收藏
页码:6923 / 6936
页数:14
相关论文
共 29 条
[1]   Predicting dose-volume histograms for organs-at-risk in IMRT planning [J].
Appenzoller, Lindsey M. ;
Michalski, Jeff M. ;
Thorstad, Wade L. ;
Mutic, Sasa ;
Moore, Kevin L. .
MEDICAL PHYSICS, 2012, 39 (12) :7446-7461
[2]   Stereotactic body radiation therapy: The report of AAPM Task Group 101 [J].
Benedict, Stanley H. ;
Yenice, Kamil M. ;
Followill, David ;
Galvin, James M. ;
Hinson, William ;
Kavanagh, Brian ;
Keall, Paul ;
Lovelock, Michael ;
Meeks, Sanford ;
Papiez, Lech ;
Purdie, Thomas ;
Sadagopan, Ramaswamy ;
Schell, Michael C. ;
Salter, Bill ;
Schlesinger, David J. ;
Shiu, Almon S. ;
Solberg, Timothy ;
Song, Danny Y. ;
Stieber, Volker ;
Timmerman, Robert ;
Tome, Wolfgang A. ;
Verellen, Dirk ;
Wang, Lu ;
Yin, Fang-Fang .
MEDICAL PHYSICS, 2010, 37 (08) :4078-4101
[3]  
Bishop C. M., 2006, Journal of Electronic Imaging, V128
[4]   IMRT treatment planning -: A comparative inter-system and intor-centre planning exercise of the ESTRO QUASIMODO group [J].
Bohsung, J ;
Gillis, S ;
Arrans, R ;
Bakai, A ;
De Wagter, C ;
Knöös, T ;
Mijnheer, BJ ;
Paiusco, M ;
Perrin, BA ;
Welleweerd, H ;
Williams, P .
RADIOTHERAPY AND ONCOLOGY, 2005, 76 (03) :354-361
[5]   KERNEL DENSITY ESTIMATION VIA DIFFUSION [J].
Botev, Z. I. ;
Grotowski, J. F. ;
Kroese, D. P. .
ANNALS OF STATISTICS, 2010, 38 (05) :2916-2957
[6]  
Cawley GC, 2010, J MACH LEARN RES, V11, P2079
[7]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[8]   Knowledge-based IMRT treatment planning for prostate cancer [J].
Chanyavanich, Vorakarn ;
Das, Shiva K. ;
Lee, William R. ;
Lo, Joseph Y. .
MEDICAL PHYSICS, 2011, 38 (05) :2515-2522
[9]   Linear Time Algorithms for Exact Distance Transform [J].
Ciesielski, Krzysztof Chris ;
Chen, Xinjian ;
Udupa, Jayaram K. ;
Grevera, George J. .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2011, 39 (03) :193-209
[10]   Intensity-modulated radiation therapy dose prescription, recording, and delivery: Patterns of variability among institutions and treatment planning systems [J].
Das, Indra J. ;
Cheng, Chee-Wai ;
Chopra, Kashmiri L. ;
Mitra, Raj K. ;
Srivastava, Shiv P. ;
Glatstein, Eli .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2008, 100 (05) :300-307