Larvicidal potential of silver nanoparticles synthesized from Leucas aspera leaf extracts against dengue vector Aedes aegypti

被引:0
作者
Suganya, Ganesan [1 ]
Karthi, Sengodan [1 ]
Shivakumar, Muthugounder S. [1 ]
机构
[1] Periyar Univ, Dept Biotechnol, Mol Entomol Lab, Salem, Tamil Nadu, India
关键词
Aedes aegypti; Nanoparticles; Leucas aspera; Plant extracts; AgNPs; CULEX-QUINQUEFASCIATUS; ANOPHELES-STEPHENSI; PLANT; DIPTERA; L;
D O I
10.1007/s00436-014-3811-2
中图分类号
R38 [医学寄生虫学]; Q [生物科学];
学科分类号
07 ; 0710 ; 09 ; 100103 ;
摘要
Vector-borne diseases caused by mosquitoes are one of the major economic and health problems in many countries. The Aedes aegypti mosquito is a vector of several diseases in humans like yellow fever and dengue. Vector control methods involving the use of chemical insecticides are becoming less effective due to development of insecticides resistance, biological magnification of toxic substances through the food chain, and adverse effects on environmental quality and non-target organisms including human health. Application of active toxic agents from plant extracts as an alternative mosquito control strategy was available from ancient times. These are nontoxic, easily available at affordable prices, biodegradable, and show broad-spectrum target-specific activities against different species of vector mosquitoes. Today, nanotechnology is a promising research domain which has wide-ranging application vector control programs. The present study investigates the larvicidal potential of solvent leaf extracts of Leucas aspera and synthesized silver nanoparticles using aqueous leaf extract against fourth instar larvae of Aedes aegypti. Larvae were exposed to varying concentrations of plant extracts and synthesized AgNPs for 24 h. The results were recorded from UV-Vis spectra, x-ray diffraction (XRD), Fourier transform infrared (FT-IR), and scanning electron microscopy (SEM), and were used to characterize and support the biosynthesis of silver nanoparticles. The formation of the AgNPs synthesized from the XRD spectrum compared with Bragg reflections can be indexed to the (111) orientations, respectively, confirmed the presence of AgNPs. The FT-IR spectra of AgNPs exhibited prominent peaks at 3,447.77; 2,923.30; and 1,618.66 cm(-1). The spectra showed sharp and strong absorption band at 1,618.66 cm(-1) assigned to the stretching vibration of (NH) Ca center dot O group. The band 1,383 developed for Ca center dot C and Ca center dot N stretching, respectively, and was commonly found in the proteins. SEM analysis of the synthesized AgNPs clearly showed the clustered and irregular shapes, mostly aggregated, and having the size of 25-80 nm. Energy-dispersive x-ray spectroscopy showed the complete chemical composition of the synthesized AgNPs. In larvicidal activity, the results showed that the maximum efficacy was observed in synthesized AgNPs leaf extracts against the fourth instar larvae of A. aegypti (LC50 values of 8.5632, 10.0361, 14.4689, 13.4579, 17.4108, and 27.4936 mg/l) and (LC90 values of 21.5685, 93.03928, 39.6485, 42.2029, 31.3009, and 53.2576 mg/l), respectively. These results suggest that the synthesized AgNPs leaf extracts have a higher larvicidal potential as compared to crude solvent extracts thus making them an effective combination for controlling A. aegypti.
引用
收藏
页码:1673 / 1679
页数:7
相关论文
共 34 条
  • [1] Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae)
    Amer, Abdelkrim
    Mehlhorn, Heinz
    [J]. PARASITOLOGY RESEARCH, 2006, 99 (04) : 466 - 472
  • [2] [Anonymous], 1996, PROGR REPROD HLTH RE, P1
  • [3] Adulticidal and larvicidal efficacy of some medicinal plant extracts against tick, fluke and mosquitoes
    Bagavan, A.
    Kamaraj, C.
    Elango, G.
    Zahir, A. Abduz
    Rahuman, A. Abdul
    [J]. VETERINARY PARASITOLOGY, 2009, 166 (3-4) : 286 - 292
  • [4] Bansal SK, 2009, J ENVIRON BIOL, V30, P221
  • [5] Determination of nanocrystal sizes:: A comparison of TEM, SAXS, and XRD studies of highly monodisperse COPt3 particles
    Borchert, H
    Shevehenko, EV
    Robert, A
    Mekis, I
    Kornowski, A
    Grübel, G
    Weller, H
    [J]. LANGMUIR, 2005, 21 (05) : 1931 - 1936
  • [6] Chatterjee SK, 1969, J I CHEM, V41, P98
  • [7] Chaudhury NA, 1969, J INDIAN CHEM SOC, V46, P95
  • [8] Laboratory study on larvicidal activity of indigenous plant extracts against Anopheles subpictus and Culex tritaeniorhynchus
    Elango, G.
    Rahuman, A. Abdul
    Bagavan, A.
    Kamaraj, C.
    Zahir, A. Abduz
    Venkatesan, C.
    [J]. PARASITOLOGY RESEARCH, 2009, 104 (06) : 1381 - 1388
  • [9] Govindarajan M, 2010, EUR REV MED PHARMACO, V14, P107
  • [10] Dengue and dengue hemorrhagic fever
    Gubler, DJ
    [J]. CLINICAL MICROBIOLOGY REVIEWS, 1998, 11 (03) : 480 - +