Non-Negative Factorization for Clustering of Microarray Data

被引:0
作者
Morgos, L. [1 ]
机构
[1] Univ Oradea, Fac Elect Engn & Informat Technol, Dept Elect & Telecommun, Oradea 419987, Romania
关键词
computational intelligence; microarray data analysis; clustering; recognition; SINGULAR-VALUE DECOMPOSITION; MATRIX FACTORIZATION; EXPRESSION; PREDICTION; CLASSIFICATION; DISCOVERY; CANCER; PARTS;
D O I
10.15837/ijccc.2014.1.866
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Typically, gene expression data are formed by thousands of genes associated to tens or hundreds of samples. Gene expression data comprise relevant (discriminant) information as well as irrelevant information often interpreted as noise. The irrelevant information usually affects the efficiency of discovering and grouping meaningful latent information correlated to biological significance, process closely related to data clustering. Class discovery through clustering may help in identifying latent features that reflect molecular signatures, ultimately leading to class forming. One solution for improving the class discovery efficiency is provided by data dimensionality reduction, where data is decomposed into lower dimensional factors, so that those factors approximate original data.
引用
收藏
页码:16 / 23
页数:8
相关论文
共 17 条
[1]   Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays [J].
Alon, U ;
Barkai, N ;
Notterman, DA ;
Gish, K ;
Ybarra, S ;
Mack, D ;
Levine, AJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (12) :6745-6750
[2]   Singular value decomposition for genome-wide expression data processing and modeling [J].
Alter, O ;
Brown, PO ;
Botstein, D .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (18) :10101-10106
[3]   Metagenes and molecular pattern discovery using matrix factorization [J].
Brunet, JP ;
Tamayo, P ;
Golub, TR ;
Mesirov, JP .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (12) :4164-4169
[4]   Nonnegative matrix factorization in polynomial feature space [J].
Buciu, Ioan ;
Nikolaidis, Nikos ;
Pitas, Ioannis .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 2008, 19 (06) :1090-1100
[5]  
Buciu I, 2008, INT J COMPUT COMMUN, V3, P67
[6]   Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring [J].
Golub, TR ;
Slonim, DK ;
Tamayo, P ;
Huard, C ;
Gaasenbeek, M ;
Mesirov, JP ;
Coller, H ;
Loh, ML ;
Downing, JR ;
Caligiuri, MA ;
Bloomfield, CD ;
Lander, ES .
SCIENCE, 1999, 286 (5439) :531-537
[7]   Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks [J].
Khan, J ;
Wei, JS ;
Ringnér, M ;
Saal, LH ;
Ladanyi, M ;
Westermann, F ;
Berthold, F ;
Schwab, M ;
Antonescu, CR ;
Peterson, C ;
Meltzer, PS .
NATURE MEDICINE, 2001, 7 (06) :673-679
[8]   Sparse non-negative matrix factorizations via alternating non-negativity-constrained least squares for microarray data analysis [J].
Kim, Hyunsoo ;
Park, Haesun .
BIOINFORMATICS, 2007, 23 (12) :1495-1502
[9]   Spectral biclustering of microarray data: Coclustering genes and conditions [J].
Kluger, Y ;
Basri, R ;
Chang, JT ;
Gerstein, M .
GENOME RESEARCH, 2003, 13 (04) :703-716
[10]   Learning the parts of objects by non-negative matrix factorization [J].
Lee, DD ;
Seung, HS .
NATURE, 1999, 401 (6755) :788-791