The Structure of Autocovariance Matrix of Discrete Time Subfractional Brownian Motion

被引:0
作者
Jiang, Guo [1 ]
机构
[1] Hubei Normal Univ, Sch Math & Stat, Huangshi 435002, Peoples R China
关键词
COVARIANCE-MATRIX; ESTIMATORS; RESPECT;
D O I
10.1155/2018/3132048
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This article explores the structure of autocovariance matrix of discrete time subfractional Brownian motion and obtains an approximation theorem and a structure theorem to the autocovariance matrix of this stochastic process. Moreover, we give an expression to the unique time varying eigenvalue of the autocovariance matrix in asymptotic means and prove that the increments of subfractional Brownian motion are asymptotic stationary processes. At last, we illustrate these results with numerical experiments and give some probable applications in finite impulse response filter.
引用
收藏
页数:14
相关论文
共 27 条
[1]  
Ayache A, 2000, INT CONF ACOUST SPEE, P3810, DOI 10.1109/ICASSP.2000.860233
[2]  
Biagini F, 2008, PROBAB APPL SER, P1
[3]   Limit theorems for occupation time fluctuations of branching systems I: Long-range dependence [J].
Bojdecki, T ;
Gorostiza, LG ;
Talarczyk, A .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2006, 116 (01) :1-18
[4]   Sub-fractional Brownian motion and its relation to occupation times [J].
Bojdecki, T ;
Gorostiza, LG ;
Talarczyk, A .
STATISTICS & PROBABILITY LETTERS, 2004, 69 (04) :405-419
[5]   Fractional Brownian density process and its self-intersection local time of order k [J].
Bojdecki, T ;
Gorostiza, LG ;
Talarczyk, A .
JOURNAL OF THEORETICAL PROBABILITY, 2004, 17 (03) :717-739
[6]   A new test for sphericity of the covariance matrix for high dimensional data [J].
Fisher, Thomas J. ;
Sun, Xiaogian ;
Gallagher, Colin M. .
JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (10) :2554-2570
[7]   Some studies on the structure of covariance matrix of discrete-time fBm [J].
Gupta, Anubha ;
Joshi, ShivDutt .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (10) :4635-4650
[8]  
Lancaster P., 1985, THEORY MATRICES
[9]  
Liu J, 2012, ABSTRACT APPL ANAL, V2012, P14
[10]   Variations and estimators for self-similarity parameter of sub-fractional Brownian motion via Malliavin calculus [J].
Liu, Junfeng ;
Tang, Donglei ;
Cang, Yuquan .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (07) :3276-3289