Chargym: An EV Charging Station Model for Controller Benchmarking

被引:6
作者
Karatzinis, Georgios [1 ]
Korkas, Christos [1 ,2 ]
Terzopoulos, Michalis [1 ]
Tsaknakis, Christos [1 ,2 ]
Stefanopoulou, Aliki [1 ]
Michailidis, Iakovos [1 ,2 ]
Kosmatopoulos, Elias [1 ,2 ]
机构
[1] Democritus Univ Thrace, Xanthi 67100, Greece
[2] Ctr Res & Technol, Thessaloniki 57001, Greece
来源
ARTIFICIAL INTELLIGENCE APPLICATIONS AND INNOVATIONS. AIAI 2022 IFIP WG 12.5 INTERNATIONAL WORKSHOPS | 2022年 / 652卷
基金
欧盟地平线“2020”;
关键词
Electric vehicles; Charging optimization; Deep reinforcement learning; Benchmarking; MANAGEMENT;
D O I
10.1007/978-3-031-08341-9_20
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents Chargym, a Python-based openai-gym compatible environment, that simulates the charging dynamics of a grid connected Electrical Vehicle (EV) charging station. Chargym transforms the classic EV charging problem into a Reinforcement Learning setup that can be used for benchmarking of various and off-the-shelf control and optimization algorithms enabling both single and multiple agent formulations. The incorporated charging station dynamics are presented with a brief explanation of the system parameters and function of the technical equipment. Moreover, we describe the structure of the used framework, highlighting the key features and data models that provide the necessary inputs for optimal control decisions. Finally, an experimental performance analysis is provided using two different state-of-the-art Reinforcement Learning (RL) algorithms validating the operation of the provided environment.
引用
收藏
页码:241 / 252
页数:12
相关论文
共 22 条
  • [1] Review of Electric Vehicle Technologies, Charging Methods, Standards and Optimization Techniques
    Arif, Syed Muhammad
    Lie, Tek Tjing
    Seet, Boon Chong
    Ayyadi, Soumia
    Jensen, Kristian
    [J]. ELECTRONICS, 2021, 10 (16)
  • [2] Spatial and Temporal Model of Electric Vehicle Charging Demand
    Bae, Sungwoo
    Kwasinski, Alexis
    [J]. IEEE TRANSACTIONS ON SMART GRID, 2012, 3 (01) : 394 - 403
  • [3] Bardi M., 1997, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, V12
  • [4] Optimized sizing of photovoltaic grid-connected electric vehicle charging system using particle swarm optimization
    Bhatti, Abdul Rauf
    Salam, Zainal
    Sultana, Beenish
    Rasheed, Nadia
    Awan, Ahmed Bilal
    Sultana, Umbrin
    Younas, Muhammad
    [J]. INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2019, 43 (01) : 500 - 522
  • [5] Diaz de Arcaya A., 2015, SIMULATION PLATFORM
  • [6] Han S, 2010, INNOV SMART GRID TEC
  • [7] An Adaptive Learning-Based Approach for Nearly Optimal Dynamic Charging of Electric Vehicle Fleets
    Korkas, Christos D.
    Baldi, Simone
    Yuan, Shuai
    Kosmatopoulos, Elias B.
    [J]. IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2018, 19 (07) : 2066 - 2075
  • [8] Korkas CD, 2017, MED C CONTR AUTOMAT, P484, DOI 10.1109/MED.2017.7984164
  • [9] ACN-Sim: An Open-Source Simulator for Data-Driven Electric Vehicle Charging Research
    Lee, Zachary J.
    Johansson, Daniel
    Low, Steven H.
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CONTROL, AND COMPUTING TECHNOLOGIES FOR SMART GRIDS (SMARTGRIDCOMM), 2019,
  • [10] Lillicrap T. P., 2015, arXiv