On concentration of solution to a Schrodinger logarithmic equation with deepening potential well

被引:14
作者
Alves, Claudianor O. [1 ]
de Morais Filho, Daniel C. [1 ]
Figueiredo, Giovany M. [2 ]
机构
[1] Univ Fed Campina Grande PB, Unidade Acad Matemat, Campina Grande, Paraiba, Brazil
[2] Univ Brasilia UNB, Dept Matemat Brasilia, Brasilia, DF, Brazil
关键词
concentration results; positive solution; Schrodinger logarithmic equation; second-order elliptic equations; POSITIVE SOLUTIONS;
D O I
10.1002/mma.5699
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we prove the existence of positive solution for the following class of problems- Delta u+lambda V(x)u=ulogu(2), x is an element of R-N, u is an element of H1(R-N), where lambda>0 and V:RN -> R is a potential satisfying some conditions. Using the variational method developed by Szulkin for functionals, which are the sum of a C-1 functional with a convex lower semicontinuous functional, we prove that for each large enough lambda>0, there exists a positive solution for the problem, and that, as lambda ->+infinity, such solutions converge to a positive solution of the limit problem defined on the domain omega=int(V-1({0})).
引用
收藏
页码:4862 / 4875
页数:14
相关论文
共 17 条
[1]   Existence and concentration of positive solutions for a Schrodinger logarithmic equation [J].
Alves, Claudianor O. ;
de Morais Filho, Daniel C. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (06)
[2]   Nonlinear Schrodinger equations with steep potential well [J].
Bartsch, T ;
Pankov, A ;
Wang, ZQ .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2001, 3 (04) :549-569
[3]   Multiple positive solutions for a nonlinear Schrodinger equation [J].
Bartsch, T ;
Wang, ZQ .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2000, 51 (03) :366-384
[4]  
Clapp M., 2003, Differ. Integr. Equ, V16, P981
[5]   Fractional logarithmic Schrodinger equations [J].
d'Avenia, Pietro ;
Squassina, Marco ;
Zenari, Marianna .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (18) :5207-5216
[6]   ON THE LOGARITHMIC SCHRODINGER EQUATION [J].
D'Avenia, Pietro ;
Montefusco, Eugenio ;
Squassina, Marco .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2014, 16 (02)
[7]  
Degiovanni J, 2000, MATH COMPUT MODEL, V32, P1377
[8]   Multiplicity of positive solutions of a nonlinear Schrodinger equation [J].
Ding, YH ;
Tanaka, K .
MANUSCRIPTA MATHEMATICA, 2003, 112 (01) :109-135
[9]   A logarithmic Schrodinger equation with asymptotic conditions on the potential [J].
Ji, Chao ;
Szulkin, Andrzej .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 437 (01) :241-254
[10]  
Lieb E.H., 2001, Graduate Studies in Mathematics, V14