Carrier relaxation bottleneck in type-II InAs/InGaAlAs/InP(001) coupled quantum dots-quantum well structure emitting at 1.55 μm

被引:8
作者
Syperek, M. [1 ]
Andrzejewski, J. [1 ]
Rogowicz, E. [1 ]
Misiewicz, J. [1 ]
Bauer, S. [2 ]
Sichkovskyi, V. I. [2 ]
Reithmaier, J. P. [2 ]
Sek, G. [1 ]
机构
[1] Wroclaw Univ Sci & Technol, Dept Expt Phys, Fac Fundamental Problems Technol, Lab Opt Spect Nanostruct, Wybreze Wyspianskiego 27, PL-50370 Wroclaw, Poland
[2] Univ Kassel, CINSaT, Inst Nanostruct Technol & Analyt INA, Heinrich Plett Str 40, D-34132 Kassel, Germany
关键词
ROOM-TEMPERATURE; LASERS; GAAS; INP;
D O I
10.1063/1.5027596
中图分类号
O59 [应用物理学];
学科分类号
摘要
Carrier relaxation in self-assembled InAs/In0.53Ga0.23Al0.24As/InP(001) quantum dots emitting at 1.55 mu m and quantum dots coupled to the In0.64Ga0.36As/In0.53Ga0.23Al0.24As quantum well through a thin In0.53Ga0.23Al0.24As barrier is investigated employing high-temporal-resolution (< 0.3 ps), time-resolved spectroscopic techniques at cryogenic temperatures, supported additionally with photoluminescence, photoluminescence excitation, and theoretical modelling. We focused on intra-band carrier relaxation pathways that solely determine the observed non-equilibrium carrier population kinetics. We ascertained relatively fast carrier capture and intra-band relaxation process in a reference structure with quantum dots only (similar to 8 ps time constant) and even faster initial relaxation in the coupled system (similar to 4 ps). An evident bottleneck effect is observed for the final relaxation stage in the coupled quantum dots-quantum well system slowing down the overall relaxation process by a factor of 5. The effect is attributed to a peculiar picture of the confined conduction band states in the coupled system exhibiting significant changes in the spatial distribution between the relevant lowest-lying electronic states. Published by AIP Publishing.
引用
收藏
页数:5
相关论文
共 41 条
[31]   Rapid carrier relaxation in In0.4Ga0.6As/GaAs quantum dots characterized by differential transmission spectroscopy [J].
Sosnowski, TS ;
Norris, TB ;
Jiang, H ;
Singh, J ;
Kamath, K ;
Bhattacharya, P .
PHYSICAL REVIEW B, 1998, 57 (16) :R9423-R9426
[32]   PROPERTIES OF A TUNNELING INJECTION QUANTUM-WELL LASER - RECIPE FOR A COLD DEVICE WITH A LARGE MODULATION BANDWIDTH [J].
SUN, HC ;
DAVIS, L ;
SETHI, S ;
SINGH, J ;
BHATTACHARYA, P .
IEEE PHOTONICS TECHNOLOGY LETTERS, 1993, 5 (08) :870-872
[33]   Carrier relaxation dynamics in InAs/GaInAsP/InP(001) quantum dashes emitting near 1.55 μm [J].
Syperek, M. ;
Dusanowski, L. ;
Andrzejewski, J. ;
Rudno-Rudzinski, W. ;
Sek, G. ;
Misiewicz, J. ;
Lelarge, F. .
APPLIED PHYSICS LETTERS, 2013, 103 (08)
[34]   Influence of electronic coupling on the radiative lifetime in the (In,Ga)As/GaAs quantum dot-quantum well system [J].
Syperek, M. ;
Andrzejewski, J. ;
Rudno-Rudzinski, W. ;
Sek, G. ;
Misiewicz, J. ;
Pavelescu, E. M. ;
Gilfert, C. ;
Reithmaier, J. P. .
PHYSICAL REVIEW B, 2012, 85 (12)
[35]   Time-resolved photoluminescence spectroscopy of an InGaAs/GaAs quantum well-quantum dots tunnel injection structure [J].
Syperek, M. ;
Leszczynski, P. ;
Misiewicz, J. ;
Pavelescu, E. M. ;
Gilfert, C. ;
Reithmaier, J. P. .
APPLIED PHYSICS LETTERS, 2010, 96 (01)
[36]   Transient carrier transfer in tunnel injection structures [J].
Talalaev, V. G. ;
Tomm, J. W. ;
Zakharov, N. D. ;
Werner, P. ;
Goesele, U. ;
Novikov, B. V. ;
Sokolov, A. S. ;
Samsonenko, Y. B. ;
Egorov, V. A. ;
Cirlin, G. E. .
APPLIED PHYSICS LETTERS, 2008, 93 (03)
[37]   Observation of phonon bottleneck in quantum dot electronic relaxation [J].
Urayama, J ;
Norris, TB ;
Singh, J ;
Bhattacharya, P .
PHYSICAL REVIEW LETTERS, 2001, 86 (21) :4930-4933
[38]   Band parameters for III-V compound semiconductors and their alloys [J].
Vurgaftman, I ;
Meyer, JR ;
Ram-Mohan, LR .
JOURNAL OF APPLIED PHYSICS, 2001, 89 (11) :5815-5875
[39]   Room-temperature continuous photopumped laser operation of coupled InP quantum dot and InGaP quantum well InP-InGaP-In(AlGa)P-InAlP heterostructures [J].
Walter, G ;
Holonyak, N ;
Ryou, JH ;
Dupuis, RD .
APPLIED PHYSICS LETTERS, 2001, 79 (13) :1956-1958
[40]  
Wang Z., 2012, Quantum Dot Devices