Carrier relaxation bottleneck in type-II InAs/InGaAlAs/InP(001) coupled quantum dots-quantum well structure emitting at 1.55 μm

被引:8
作者
Syperek, M. [1 ]
Andrzejewski, J. [1 ]
Rogowicz, E. [1 ]
Misiewicz, J. [1 ]
Bauer, S. [2 ]
Sichkovskyi, V. I. [2 ]
Reithmaier, J. P. [2 ]
Sek, G. [1 ]
机构
[1] Wroclaw Univ Sci & Technol, Dept Expt Phys, Fac Fundamental Problems Technol, Lab Opt Spect Nanostruct, Wybreze Wyspianskiego 27, PL-50370 Wroclaw, Poland
[2] Univ Kassel, CINSaT, Inst Nanostruct Technol & Analyt INA, Heinrich Plett Str 40, D-34132 Kassel, Germany
关键词
ROOM-TEMPERATURE; LASERS; GAAS; INP;
D O I
10.1063/1.5027596
中图分类号
O59 [应用物理学];
学科分类号
摘要
Carrier relaxation in self-assembled InAs/In0.53Ga0.23Al0.24As/InP(001) quantum dots emitting at 1.55 mu m and quantum dots coupled to the In0.64Ga0.36As/In0.53Ga0.23Al0.24As quantum well through a thin In0.53Ga0.23Al0.24As barrier is investigated employing high-temporal-resolution (< 0.3 ps), time-resolved spectroscopic techniques at cryogenic temperatures, supported additionally with photoluminescence, photoluminescence excitation, and theoretical modelling. We focused on intra-band carrier relaxation pathways that solely determine the observed non-equilibrium carrier population kinetics. We ascertained relatively fast carrier capture and intra-band relaxation process in a reference structure with quantum dots only (similar to 8 ps time constant) and even faster initial relaxation in the coupled system (similar to 4 ps). An evident bottleneck effect is observed for the final relaxation stage in the coupled quantum dots-quantum well system slowing down the overall relaxation process by a factor of 5. The effect is attributed to a peculiar picture of the confined conduction band states in the coupled system exhibiting significant changes in the spatial distribution between the relevant lowest-lying electronic states. Published by AIP Publishing.
引用
收藏
页数:5
相关论文
共 41 条
[1]   On optimizing Jacobi-Davidson method for calculating eigenvalues in low dimensional structures using eight band k . p model [J].
Andrzejewski, Janusz .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 249 :22-35
[2]   CARRIER-INDUCED CHANGE IN REFRACTIVE-INDEX OF INP, GAAS, AND INGAASP [J].
BENNETT, BR ;
SOREF, RA ;
DELALAMO, JA .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1990, 26 (01) :113-122
[3]   Importance of second-order piezoelectric effects in zinc-blende semiconductors [J].
Bester, Gabriel ;
Wu, Xifan ;
Vanderbilt, David ;
Zunger, Alex .
PHYSICAL REVIEW LETTERS, 2006, 96 (18)
[4]   Carrier dynamics and high-speed modulation properties of tunnel injection InGaAs-GaAs quantum-dot lasers [J].
Bhattacharya, P ;
Ghosh, S ;
Pradhan, S ;
Singh, J ;
Wu, ZK ;
Urayama, J ;
Kim, K ;
Norris, TB .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2003, 39 (08) :952-962
[5]   High-speed tunnel injection quantum well and quantum dot lasers [J].
Bhattacharya, P ;
Zhang, XK ;
Yuan, YS ;
Kamath, K ;
Klotzkin, D ;
Caneau, C ;
Bhat, R .
PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES VI, PTS 1 AND 2, 1998, 3283 :702-709
[6]   Tunnel injection In0.4Ga0.6As/GaAs quantum dot lasers with 15 GHz modulation bandwidth at room temperature [J].
Bhattacharya, P ;
Ghosh, S .
APPLIED PHYSICS LETTERS, 2002, 80 (19) :3482-3484
[7]   Tunneling injection lasers: A new class of lasers with reduced hot carrier effects [J].
Bhattacharya, P ;
Singh, J ;
Yoon, H ;
Zhang, XK ;
GutierrezAitken, A ;
Lam, YL .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 1996, 32 (09) :1620-1629
[8]   Ultrafast carrier capture at room temperature in InAs/InP quantum dots emitting in the 1.55 μm wavelength region -: art. no. 173109 [J].
Bogaart, EW ;
Nötzel, R ;
Gong, Q ;
Haverkort, JEM ;
Wolter, JH .
APPLIED PHYSICS LETTERS, 2005, 86 (17) :1-3
[9]   Role of the continuum background for carrier relaxation in InAs quantum dots -: art. no. 195301 [J].
Bogaart, EW ;
Haverkort, JEM ;
Mano, T ;
van Lippen, T ;
Nötzel, R ;
Wolter, JH .
PHYSICAL REVIEW B, 2005, 72 (19)
[10]   Coupled strained-layer InGaAs quantum-well improvement of an InAs quantum dot AlGaAs-GaAs-InGaAs-InAs heterostructure laser [J].
Chung, T ;
Walter, G ;
Holonyak, N .
APPLIED PHYSICS LETTERS, 2001, 79 (27) :4500-4502