Inhomogeneous boundary value problems for compressible Navier-Stokes and transport equations

被引:22
作者
Plotnikov, P. I. [1 ]
Ruban, E. V. [1 ]
Sokolowski, J. [2 ]
机构
[1] Russian Acad Sci, Lavryentyev Inst Hydrodynam, Siberian Div, Novosibirsk 630090, Russia
[2] Univ Nancy 1, Inst Elie Cartan, Math Lab, F-54506 Vandoeuvre Les Nancy, France
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2009年 / 92卷 / 02期
关键词
Compressible Navier-Stokes equations; Transport equations; Bergman projection; Incompressible limit; INCOMPRESSIBLE LIMIT;
D O I
10.1016/j.matpur.2009.02.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the paper compressible, stationary Navier-Stokes equations are considered. A framework for analysis of such equations is established. The well-posedness for inhomogeneous boundary value problems of elliptic-hyperbolic type is shown. (C) 2009 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:113 / 162
页数:50
相关论文
共 33 条
[11]   Lp-estimates for the Navier-Stokes equations for steady compressible flow [J].
Frehse, J ;
Goj, S ;
Steinhauer, M .
MANUSCRIPTA MATHEMATICA, 2005, 116 (03) :265-275
[12]  
Galdi G.P., 1998, INTRO MATH THEORY NA, VI
[13]  
Gilbarg David, 1977, Elliptic Partial Differential Equations of Second order, V224
[14]  
Heywood JG, 2000, ADV MATH FLUID MECH, P171
[15]  
HORMANDE.L, 1966, ANN MATH, V83, P127
[16]   Estimates of the harmonic Bergman kernel on smooth domains [J].
Kang, H ;
Koo, H .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 185 (01) :220-239
[17]   DEGENERATE ELLIPTIC-PARABOLIC EQUATIONS OF SECOND ORDER [J].
KOHN, JJ ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1967, 20 (04) :797-+
[18]   Compressible Navier-Stokes equations in a bounded domain with inflow boundary condition [J].
Kweon, JR ;
Kellogg, RB .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1997, 28 (01) :94-108
[19]  
KWEON JR, 2000, ARCH RATION MECH AN, V163, P36
[20]  
Landau L. D., 1987, FLUID MECH-SOV RES, V2nd, P89