A superconvergent nonconforming mixed finite element method for the Navier-Stokes equations

被引:11
|
作者
Ren, Jincheng [1 ]
Ma, Yue [2 ]
机构
[1] Henan Univ Econ & Law, Coll Math & Informat Sci, Zhengzhou 450045, Peoples R China
[2] North China Univ Water Resources & Elect Power, Sch Math & Informat Sci, Zhengzhou 450045, Peoples R China
基金
中国国家自然科学基金;
关键词
Navier-Stokes equations; nonconforming mixed finite element; superconvergence; STATIONARY STOKES; ANISOTROPIC MESHES; CONSTANT SCHEME; APPROXIMATION;
D O I
10.1002/num.22023
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The superconvergence for a nonconforming mixed finite element approximation of the Navier-Stokes equations is analyzed in this article. The velocity field is approximated by the constrained nonconforming rotated Q(1) (CNRQ(1)) element, and the pressure is approximated by the piecewise constant functions. Under some regularity assumptions, the superconvergence estimates for both the velocity in broken H-1-norm and the pressure in L-2-norm are obtained. Some numerical examples are presented to demonstrate our theoretical results. (c) 2015 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 646-660, 2016
引用
收藏
页码:646 / 660
页数:15
相关论文
共 50 条
  • [21] A MIXED FINITE ELEMENT METHOD ON A STAGGERED MESH FOR NAVIER-STOKES EQUATIONS
    Han, Houde
    Yan, Ming
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2008, 26 (06) : 816 - 824
  • [22] The postprocessed mixed finite-element method for the Navier-Stokes equations
    Ayuso, B
    García-Archilla, B
    Novo, J
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (03) : 1091 - 1111
  • [23] A MIXED FINITE ELEMENT METHOD ON A STAGGERED MESH FOR NAVIER-STOKES EQUATIONS
    Houde Han Ming Yan Department of Mathematics
    JournalofComputationalMathematics, 2008, 26 (06) : 816 - 824
  • [24] A new stable second order nonconforming mixed finite element scheme for the stationary Stokes and Navier-Stokes equations
    Shi, Dongyang
    Gong, Wei
    Ren, Jincheng
    MATHEMATICAL AND COMPUTER MODELLING, 2011, 53 (9-10) : 1956 - 1969
  • [25] A Two-Level Stabilized Nonconforming Finite Element Method for the Stationary Navier-Stokes Equations
    Zhu, Liping
    Chen, Zhangxin
    HIGH PERFORMANCE COMPUTING AND APPLICATIONS, 2010, 5938 : 579 - +
  • [26] A NONCONFORMING FINITE-ELEMENT METHOD OF STREAMLINE DIFFUSION TYPE FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
    LUBE, G
    TOBISKA, L
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 1990, 8 (02): : 147 - 158
  • [27] A new local stabilized nonconforming finite element method for solving stationary Navier-Stokes equations
    Zhu, Liping
    Li, Jian
    Chen, Zhangxin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 235 (08) : 2821 - 2831
  • [28] A two-level stabilized nonconforming finite element method for the stationary Navier-Stokes equations
    Zhu, Liping
    Chen, Zhangxin
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2015, 114 : 37 - 48
  • [29] A mixed virtual element method for the Navier-Stokes equations
    Gatica, Gabriel N.
    Munar, Mauricio
    Sequeira, Filander A.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (14): : 2719 - 2762
  • [30] AN AUGMENTED MIXED FINITE ELEMENT METHOD FOR THE NAVIER-STOKES EQUATIONS WITH VARIABLE VISCOSITY
    Camano, Jessika
    Gatica, Gabriel N.
    Oyarzua, Ricardo
    Tierra, Giordano
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (02) : 1069 - 1092