New Fixed Point Theorems with Applications to Non-Linear Neutral Differential Equations

被引:13
作者
Alnaser, Laila A. [1 ]
Ahmad, Jamshaid [2 ]
Lateef, Durdana [1 ]
Fouad, Hoda A. [1 ,3 ]
机构
[1] Taibah Univ, Dept Math, Coll Sci, Al Madina Al Munawara 41411, Saudi Arabia
[2] Univ Jeddah, Dept Math, POB 80327, Jeddah 21589, Saudi Arabia
[3] Alexandria Univ, Fac Sci, Alexandria 21500, Egypt
来源
SYMMETRY-BASEL | 2019年 / 11卷 / 05期
关键词
nonlinear neutral differential equation; F-metric space; (alpha; phi) rational contraction; fixed point;
D O I
10.3390/sym11050602
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The aim of this study is to investigate the existence of solutions for a non-linear neutral differential equation with an unbounded delay. To achieve our goals, we take advantage of fixed point theorems for self-mappings satisfying a generalized (phi) rational contraction, as well as cyclic contractions in the context of F-metric spaces. We also supply an example to support the new theorem.
引用
收藏
页数:11
相关论文
共 13 条
[1]   A fixed point theorem for cyclic generalized contractions in metric spaces [J].
Alghamdi, Maryam A. ;
Petrusel, Adrian ;
Shahzad, Naseer .
FIXED POINT THEORY AND APPLICATIONS, 2012,
[2]  
Alnaser L. A., 2019, J. Nonlinear Sci. Appl., V12, P337, DOI 10.22436/jnsa.012.05.06
[3]  
Branciari A, 2000, PUBL MATH-DEBRECEN, V57, P31
[4]  
Czerwik S., 1993, Acta Mathematica, V1, P5
[5]  
Derafshpour M, 2011, TOPOL METHOD NONL AN, V37, P193
[6]  
Djoudi A., 2006, Georgian Math. J., V13, P25, DOI DOI 10.1515/GMJ.2006.25
[7]  
Frechet M. M., 1906, REND CIRC MAT PALERM, V22, P1, DOI DOI 10.1007/BF03018603
[8]   Existence and uniqueness for a neutral differential problem with unbounded delay via fixed point results [J].
Hussain, Azhar ;
Kanwal, Tanzeela .
TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2018, 172 (03) :481-490
[9]   On a new generalization of metric spaces [J].
Jleli, Mohamed ;
Samet, Bessem .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2018, 20 (03)
[10]  
Kirk WA., 2003, Fixed Point Theory, V4, P79