THE COMBINATION TECHNIQUE FOR A TWO-DIMENSIONAL CONVECTION-DIFFUSION PROBLEM WITH EXPONENTIAL LAYERS

被引:4
作者
Franz, Sebastian [1 ]
Liu, Fang [2 ]
Roos, Hans-Goerg [1 ]
Stynes, Martin [3 ]
Zhou, Aihui [4 ]
机构
[1] Tech Univ Dresden, Inst Numer Math, Dresden, Germany
[2] Cent Univ Finance & Econ, Beijing, Peoples R China
[3] Natl Univ Ireland, Cork, Ireland
[4] Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
convection-diffusion; finite element; Shishkin mesh; two-scale discretization; FINITE-ELEMENT DISCRETIZATIONS; ERROR ANALYSIS; SHISHKIN MESH; SUPERCONVERGENCE; EQUATIONS; ACCURACY;
D O I
10.1007/s10492-009-0013-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Convection-diffusion problems posed on the unit square and with solutions displaying exponential layers are solved using a sparse grid Galerkin finite element method with Shishkin meshes. Writing N for the maximum number of mesh intervals in each coordinate direction, our "combination" method simply adds or subtracts solutions that have been computed by the Galerkin FEM on N x root N, root N x N and root N x root N meshes. It is shown that the combination FEM yields (up to a factor lnN) the same order of accuracy in the associated energy norm as the Galerkin FEM on an N x N mesh, but it requires only O(N(3/2)) degrees of freedom compared with the O(N(2)) used by the Galerkin FEM. An analogous result is also proved for the streamline diffusion finite element method.
引用
收藏
页码:203 / 223
页数:21
相关论文
共 28 条
[1]  
Bank R. E., 1996, Acta Numerica, V5, P1, DOI 10.1017/S0962492900002610
[2]   EXTRAPOLATION, COMBINATION, AND SPARSE GRID TECHNIQUES FOR ELLIPTIC BOUNDARY-VALUE-PROBLEMS [J].
BUNGARTZ, H ;
GRIEBEL, M ;
RUDE, U .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1994, 116 (1-4) :243-252
[3]  
Bungartz HJ, 2004, ACT NUMERIC, V13, P147, DOI 10.1017/S0962492904000182
[4]  
Ciarlet P.G, 2002, FINITE ELEMENT METHO, DOI DOI 10.1137/1.9780898719208
[5]   D-VARIATE BOOLEAN INTERPOLATION [J].
DELVOS, FJ .
JOURNAL OF APPROXIMATION THEORY, 1982, 34 (02) :99-114
[6]  
Dobrowolski M., 1997, Zeitschrift fur Analysis und ihre Anwendungen, V16, P1001
[7]   On the computation of the eigenproblems of hydrogen and helium in strong magnetic and electric fields with the sparse grid combination technique [J].
Garcke, J ;
Griebel, M .
JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 165 (02) :694-716
[8]  
GRIEBEL M, 1992, ITERATIVE METHODS IN LINEAR ALGEBRA, P263
[9]   A sparse finite element method with high accuracy Part I [J].
Lin, Q ;
Yan, NN ;
Zhou, AH .
NUMERISCHE MATHEMATIK, 2001, 88 (04) :731-742
[10]  
Linss T, 2000, NUMER METH PART D E, V16, P426, DOI 10.1002/1098-2426(200009)16:5<426::AID-NUM2>3.3.CO