Band Offset Engineering in ZnSnN2-Based Heterojunction for Low-Cost Solar Cells

被引:56
作者
Javaid, Kashif [1 ,2 ,3 ]
Wu, Weihua [1 ]
Wang, Jun [4 ]
Fang, Junfeng [1 ]
Zhang, Hongliang [1 ]
Gao, Junhua [1 ]
Fei Zhuge [1 ]
Liang, Lingyan [1 ,5 ]
Cao, Hongtao [1 ]
机构
[1] Chinese Acad Sci, NIMTE, Ningbo 315201, Zhejiang, Peoples R China
[2] Univ Chinese Acad Sci, Int Sch, Beijing 100049, Peoples R China
[3] Govt Coll Univ Faisalabad, Dept Phys, Allama Iqbal Rd, Faisalabad 38000, Pakistan
[4] Ningbo Univ, Dept Microelect Sci & Engn, Fac Sci, Ningbo 315211, Zhejiang, Peoples R China
[5] Chinese Acad Sci, Beijing Key Lab Low Dimens Semicond Mat & Devices, Inst Semicond, Key Lab Semicond Mat Sci, Beijing 100083, Peoples R China
来源
ACS PHOTONICS | 2018年 / 5卷 / 06期
基金
中国国家自然科学基金;
关键词
ZnSnN2; thin films; Al2O3 buffer layer; interface energy gap; conduction band offset; band alignment engineering; heterojunction solar cell; OPEN-CIRCUIT VOLTAGE; OXIDE BUFFER LAYER; TRANSPORT; INSIGHTS; NITRIDE;
D O I
10.1021/acsphotonics.8b00427
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A new ternary-alloy, zinc-tin nitride (ZnSnN2), is considered as one of the most promising absorber materials for photovoltaic applications due to its ideal band gap, rich ternary-chemistry, robust optical absorption, and low cost. In the present work, we demonstrate the ZnSnN2-based P-N and P-i-N heterojunctions to study the band offset engineering for the development of high-efficiency inorganic solar cell. The P-i-N heterojunction is composed of p-SnO, i-Al2O3, and n-ZnSnN2 constituents. The inclusion of the i-Al2O3 buffer layer has remarkably improved the solar cell efficiency by regulating the conduction band offset and interface energy gap. It is believed that our present work will offer a promising approach to manufacture ZnSnN2-based heterojunctions with better band alignment for novel photovoltaic applications.
引用
收藏
页码:2094 / 2099
页数:11
相关论文
共 28 条
[1]   Generated Carrier Dynamics in V-Pit-Enhanced InGaN/GaN Light-Emitting Diode [J].
Ajia, Idris A. ;
Edwards, Paul R. ;
Pak, Yusin ;
Belekov, Ermek ;
Roldan, Manuel A. ;
Wei, Nini ;
Liu, Zhiqiang ;
Martin, Robert W. ;
Roqan, Iman S. .
ACS PHOTONICS, 2018, 5 (03) :820-826
[2]   Band Edge Positions and Their Impact on the Simulated Device Performance of ZnSnN2-Based Solar Cells [J].
Arca, Elisabetta ;
Fioretti, Angela ;
Lany, Stephan ;
Tamboli, Adele C. ;
Teeter, Glenn ;
Melamed, Celeste ;
Pan, Jie ;
Wood, Kevin N. ;
Toberer, Eric ;
Zakutayev, Andriy .
IEEE JOURNAL OF PHOTOVOLTAICS, 2018, 8 (01) :110-117
[3]   Phase Stability and Defect Physics of a Ternary ZnSnN2 Semiconductor: First Principles Insights [J].
Chen, Shiyou ;
Narang, Prineha ;
Atwater, Harry A. ;
Wang, Lin-Wang .
ADVANCED MATERIALS, 2014, 26 (02) :311-315
[4]   Three-Dimensional Ordered ZnO/Cu2O Nanoheterojunctions for Efficient Metal-Oxide Solar Cells [J].
Chen, Xiang ;
Lin, Pei ;
Yan, Xiaoqin ;
Bai, Zhiming ;
Yuan, Haoge ;
Shen, Yanwei ;
Liu, Yichong ;
Zhang, Guangjie ;
Zhang, Zheng ;
Zhang, Yue .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (05) :3216-3223
[5]   Determination of the basic optical parameters of ZnSnN2 [J].
Deng, Fuling ;
Cao, Hongtao ;
Liang, Lingyan ;
Li, Jun ;
Gao, Junhua ;
Zhang, Hongliang ;
Qin, Ruifeng ;
Liu, Caichi .
OPTICS LETTERS, 2015, 40 (07) :1282-1285
[6]   Band gap engineering of ZnSnN2/ZnO (001) short-period superlattices via built-in electric field [J].
Fang, D. Q. ;
Zhang, Y. ;
Zhang, S. L. .
JOURNAL OF APPLIED PHYSICS, 2016, 120 (21)
[7]   Growth of ZnSnN2 by Molecular Beam Epitaxy [J].
Feldberg, N. ;
Aldous, J. D. ;
Stampe, P. A. ;
Kennedy, R. J. ;
Veal, T. D. ;
Durbin, S. M. .
JOURNAL OF ELECTRONIC MATERIALS, 2014, 43 (04) :884-888
[8]   Combinatorial insights into doping control and transport properties of zinc tin nitride [J].
Fioretti, Angela N. ;
Zakutayev, Andriy ;
Moutinho, Helio ;
Melamed, Celeste ;
Perkins, John D. ;
Norman, Andrew G. ;
Al-Jassim, Mowafak ;
Toberer, Eric S. ;
Tamboli, Adele C. .
JOURNAL OF MATERIALS CHEMISTRY C, 2015, 3 (42) :11017-11028
[9]   Study of charge carriers' transport in organic solar cells by illumination area shifting [J].
Girtan, Mihaela .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2017, 160 :430-434
[10]   Thin-film solar cells: review of materials, technologies and commercial status [J].
Green, Martin A. .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2007, 18 (Suppl 1) :S15-S19