Nonaffine Strains Control Ductility of Metallic Glasses

被引:16
作者
Wang, Hui [1 ]
Dmowski, Wojciech [1 ]
Tong, Yang [1 ]
Wang, Zengquan [1 ]
Yokoyama, Yoshihiko [3 ]
Ketkaew, Jittisa [4 ]
Schroers, Jan [4 ]
Egami, Takeshi [1 ,2 ,5 ]
机构
[1] Univ Tennessee, Dept Mat Sci & Engn, Knoxville, TN 37996 USA
[2] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37831 USA
[3] Tohoku Univ, Inst Mat Res, Aoba Ku, 2-1-1 Katahira, Sendai, Miyagi 9808577, Japan
[4] Yale Univ, Dept Mech Engn & Mat Sci, New Haven, CT 06511 USA
[5] Univ Tennessee, Dept Phys & Astron, Knoxville, TN 37996 USA
关键词
STRUCTURAL RELAXATION; MECHANICAL-PROPERTIES; POISSONS RATIO; BEHAVIOR; DEFORMATION; PLASTICITY; EMBRITTLEMENT; CRYSTALLINE; TRANSITION; TOUGHNESS;
D O I
10.1103/PhysRevLett.128.155501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The origin of limited plasticity in metallic glasses is elusive, with no apparent link to their atomic structure. We propose that the response of the glassy structure to applied stress, not the original structure itself, provides a gauge to predict the degree of plasticity. We carried out high-energy x-ray diffraction on various bulk metallic glasses (BMGs) under uniaxial compression within the elastic limit and evaluated the anisotropic pair distribution function. We show that the extent of local deviation from the affine (uniform) deformation in the elastic regime is strongly correlated with the plastic behavior of BMGs beyond yield, across chemical compositions and sample history. The results suggest that the propensity for collective local atomic rearrangements under stress promotes plasticity.
引用
收藏
页数:6
相关论文
共 58 条
  • [1] [Anonymous], US, DOI [10.1103/PhysRevLett.128.155501, DOI 10.1103/PHYSREVLETT.128.155501]
  • [2] DEVELOPMENT OF VISCO-PLASTIC DEFORMATION IN METALLIC GLASSES
    ARGON, AS
    SHI, LT
    [J]. ACTA METALLURGICA, 1983, 31 (04): : 499 - 507
  • [3] PLASTIC-DEFORMATION IN METALLIC GLASSES
    ARGON, AS
    [J]. ACTA METALLURGICA, 1979, 27 (01): : 47 - 58
  • [4] Metallic glasses as structural materials
    Ashby, MF
    Greer, AL
    [J]. SCRIPTA MATERIALIA, 2006, 54 (03) : 321 - 326
  • [5] Unveiling the predictive power of static structure in glassy systems
    Bapst, V
    Keck, T.
    Grabska-Barwinska, A.
    Donner, C.
    Cubuk, E. D.
    Schoenholz, S. S.
    Obika, A.
    Nelson, A. W. R.
    Back, T.
    Hassabis, D.
    Kohli, P.
    [J]. NATURE PHYSICS, 2020, 16 (04) : 448 - +
  • [6] Simple theory of viscosity in liquids
    Bellissard, Jean
    Egami, Takeshi
    [J]. PHYSICAL REVIEW E, 2018, 98 (06)
  • [7] Microstructure and ductile-brittle transition of as-cast Zr-based bulk glass alloys under compressive testing
    Bian, Z
    Chen, GL
    He, G
    Hui, XD
    [J]. MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2001, 316 (1-2): : 135 - 144
  • [8] The dynamic compressive behavior of beryllium bearing bulk metallic glasses
    Bruck, HA
    Rosakis, AJ
    Johnson, WL
    [J]. JOURNAL OF MATERIALS RESEARCH, 1996, 11 (02) : 503 - 511
  • [9] New class of plastic bulk metallic glass
    Chen, L. Y.
    Fu, Z. D.
    Zhang, G. Q.
    Hao, X. P.
    Jiang, Q. K.
    Wang, X. D.
    Cao, Q. P.
    Franz, H.
    Liu, Y. G.
    Xie, H. S.
    Zhang, S. L.
    Wang, B. Y.
    Zeng, Y. W.
    Jiang, J. Z.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (07)
  • [10] Test sample geometry for fracture toughness measurements of bulk metallic glasses
    Chen, Wen
    Zhou, Haofei
    Liu, Ze
    Ketkaew, Jittisa
    Shao, Ling
    Li, Ning
    Gong, Pan
    Samela, William
    Gao, Huajian
    Schroers, Jan
    [J]. ACTA MATERIALIA, 2018, 145 : 477 - 487