Wavelet-based multifractal analysis of fMRI time series

被引:79
作者
Shimizu, Y
Barth, M
Windischberger, C
Moser, E
Thurner, S
机构
[1] Med Univ Wien, Klin Radiodiagnost, MR Ctr Excellence, A-1090 Vienna, Austria
[2] Univ Vienna, NUHAG, Math Inst, A-1010 Vienna, Austria
[3] Med Univ Wien, Dept Phys Med, A-1090 Vienna, Austria
[4] Med Univ Wien, Dept Radiodiagnost, A-1090 Vienna, Austria
[5] Univ Penn, Med Ctr, Dept Psychiat, Philadelphia, PA 19104 USA
[6] Med Univ Vienna, HNO, Complex Syst Res Grp, A-1090 Vienna, Austria
关键词
BOLD; fMRI; time series; multifractals; Wavelet analysis; exploratory analysis;
D O I
10.1016/j.neuroimage.2004.03.007
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Functional magnetic resonance imaging (fMRI) time series are investigated with a multifractal method based on the Wavelet Modulus Maxima (WTMM) method to extract local singularity ("fractal") exponents. The spectrum of singularity exponents of each fMRI time series is quantified by spectral characteristics including its maximum and the corresponding dimension. Vie found that the range of Holder exponents in voxels with activation is close to 1, whereas exponents are close to 0.5 in white matter voxels without activation. The maximum dimension decreases going from white matter to gray matter, and is lower still for activated time series. The full-width-at-half-maximum of the spectra is higher in activated areas. The proposed method becomes particularly effective when combining these spectral characteristics into a single parameter. Using these multifractal parameters, it is possible to identify activated areas in the human brain in both hybrid and in vivo fMRI data sets without knowledge of the stimulation paradigm applied. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:1195 / 1202
页数:8
相关论文
共 64 条
[1]   MEASURING MULTIFRACTALS [J].
AHARONY, A .
PHYSICA D, 1989, 38 (1-3) :1-4
[2]   Wavelet domain de-noising of time-courses in MR image sequences [J].
Alexander, ME ;
Baumgartner, R ;
Windischberger, C ;
Moser, E ;
Somorjai, RL .
MAGNETIC RESONANCE IMAGING, 2000, 18 (09) :1129-1134
[3]   A wavelet-based method for improving signal-to-noise ratio and contrast in MR images [J].
Alexander, ME ;
Baumgartner, R ;
Summers, AR ;
Windischberger, C ;
Klarhoefer, M ;
Moser, E ;
Somorjai, RL .
MAGNETIC RESONANCE IMAGING, 2000, 18 (02) :169-180
[4]  
[Anonymous], RANDOM FLUCTUATIONS
[5]  
ARNEODO A, 1999, THERMODYNAMICS FRACT, P339
[6]   Quantification of intensity variations in functional MR images using rotated principal components [J].
Backfrieder, W ;
Baumgartner, R ;
Samal, M ;
Moser, E ;
Bergmann, H .
PHYSICS IN MEDICINE AND BIOLOGY, 1996, 41 (08) :1425-1438
[7]   SINGULARITY SPECTRUM OF FRACTAL SIGNALS FROM WAVELET ANALYSIS - EXACT RESULTS [J].
BACRY, E ;
MUZY, JF ;
ARNEODO, A .
JOURNAL OF STATISTICAL PHYSICS, 1993, 70 (3-4) :635-674
[8]   MULTIFRACTALITY OF SELF-AFFINE FRACTALS [J].
BARABASI, AL ;
VICSEK, T .
PHYSICAL REVIEW A, 1991, 44 (04) :2730-2733
[9]   Characterization of BOLD activation in multi-echo fMRI data using fuzzy cluster analysis and a comparison with quantitative modeling [J].
Barth, M ;
Windischberger, C ;
Klarhöfer, M ;
Moser, E .
NMR IN BIOMEDICINE, 2001, 14 (7-8) :484-489
[10]  
Bassingthwaighte J. B., 1994, Fractal Physiology, DOI DOI 10.1007/978-1-4614-7572-9