Weighted feature selection via discriminative sparse multi-view learning

被引:19
|
作者
Zhong, Jing [1 ]
Wang, Nan [2 ]
Lin, Qiang [2 ]
Zhong, Ping [2 ]
机构
[1] China Agr Univ, Coll Informat & Elect Engn, Beijing 100083, Peoples R China
[2] China Agr Univ, Coll Sci, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
Supervised structured sparsity-inducing; feature selection; Multi-view; Weighted loss; Separable penalty strategy; UNSUPERVISED FEATURE-SELECTION; FILTER METHOD; ALGORITHM; ROBUST; IMAGE; LLE;
D O I
10.1016/j.knosys.2019.04.024
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The matrix-based structured sparsity-inducing multi-view feature selection has received much attention because it can select the relevant features through the information-rich multi-view data instead of the single-view data. In this paper, a novel supervised sparse multi-view feature selection model is proposed based on the separable weighted loss term and the discriminative regularization terms. The proposed model adopts the separable strategy to enforce the weighted penalty for each view instead of using the concatenated feature vectors to calculate the penalty. Therefore, the proposed model is established by considering both the complementarity of multiple views and the specificity of each view. The derived model can be split into several small-scale problems in the process of optimization, and be solved efficiently via an iterative algorithm with low complexity. Furthermore, the convergence of the proposed iterative algorithm is investigated from both theoretical and experimental aspects. The extensive experiments compared with several state-of-the-art matrix-based feature selection methods on the widely used multi-view datasets show the effectiveness of the proposed method. (C) 2019 Elsevier B.V. All rights reserved.
引用
收藏
页码:132 / 148
页数:17
相关论文
共 50 条
  • [41] Discriminative metric learning for multi-view graph partitioning
    Li, Juan-Hui
    Wang, Chang-Dong
    Li, Pei-Zhen
    Lai, Jian-Huang
    PATTERN RECOGNITION, 2018, 75 : 199 - 213
  • [42] Multi-view SVM Classification with Feature Selection
    Niu, Yuting
    Shang, Yuan
    Tian, Yingjie
    7TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT (ITQM 2019): INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT BASED ON ARTIFICIAL INTELLIGENCE, 2019, 162 : 405 - 412
  • [43] Low-rank feature selection for multi-view regression
    Hu, Rongyao
    Cheng, Debo
    He, Wei
    Wen, Guoqiu
    Zhu, Yonghua
    Zhang, Jilian
    Zhang, Shichao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (16) : 17479 - 17495
  • [44] Adaptive Weighted Low-Rank Sparse Representation for Multi-View Clustering
    Khan, Mohammad Ahmar
    Khan, Ghufran Ahmad
    Khan, Jalaluddin
    Anwar, Taushif
    Ashraf, Zubair
    Atoum, Ibrahim A. A.
    Ahmad, Naved
    Shahid, Mohammad
    Ishrat, Mohammad
    Alghamdi, Abdulrahman Abdullah
    IEEE ACCESS, 2023, 11 : 60681 - 60692
  • [45] Structure learning with consensus label information for multi-view unsupervised feature selection
    Cao, Zhiwen
    Xie, Xijiong
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [46] Ensemble multi-view feature set partitioning method for effective multi-view learning
    Singh, Ritika
    Kumar, Vipin
    KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (08) : 4957 - 5001
  • [47] Transmission line fault-cause classification based on multi-view sparse feature selection
    Jian, Shengchao
    Peng, Xiangang
    Wu, Kaitong
    Yuan, Haoliang
    ENERGY REPORTS, 2022, 8 : 614 - 621
  • [48] Embedded feature fusion for multi-view multi-label feature selection
    Hao, Pingting
    Gao, Wanfu
    Hu, Liang
    PATTERN RECOGNITION, 2025, 157
  • [49] Robust Feature Selection with Feature Correlation via Sparse Multi-Label Learning
    Jiangjiang Cheng
    Junmei Mei
    Jing Zhong
    Min Men
    Ping Zhong
    Pattern Recognition and Image Analysis, 2020, 30 : 52 - 62
  • [50] MvFS: Multi-view Feature Selection for Recommender System
    Lee, Youngjune
    Jeong, Yeongjong
    Park, Keunchan
    Kang, SeongKu
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 4048 - 4052