Polyurethane foam as restrict reaction vessel to synthesis of Li1.2Mn0.54Ni0.13Co0.13O2 for lithium-ion batteries

被引:0
作者
Zhao, Wei [1 ,2 ]
Cai, Peijun [1 ]
Zhang, Ya [2 ]
Hu, Yi [2 ]
Sun, Yongwen [2 ]
Shi, Yueli [2 ]
Ju, Zhicheng [2 ,3 ]
机构
[1] China Univ Min & Technol, Sch Chem Engn & Technol, Xuzhou 221116, Jiangsu, Peoples R China
[2] China Univ Min & Technol, Sch Mat Sci & Engn, Xuzhou 221116, Jiangsu, Peoples R China
[3] Jiangsu Frey New Energy Co Ltd, Xuzhou 221116, Jiangsu, Peoples R China
来源
MATERIALS RESEARCH EXPRESS | 2018年 / 5卷 / 06期
关键词
polyurethane foam; lithium-ion batteries; Li-rich Manganese-based; cathode material; electrochemical performance; LAYERED CATHODE MATERIAL; ELECTROCHEMICAL PERFORMANCE; MATERIAL LI; CAPACITY; TRANSITION; STABILITY; DESIGN; OXIDES;
D O I
10.1088/2053-1591/aacad3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this work, the polyurethane (PU) foam is applied as restrict reaction vessel to synthesis of nanometer dimension Li-rich Manganese-based layered cathode material Li1.2Mn0.54Ni0.13Co0.13O2 (LMNCO). The PU foam has strong ability of absorbing mixed metal salt solution and keeping them in a relatively stable system during the freeze-drying process. Meanwhile, it supplies abundant three-dimensional interconnecting structure with macro-pore sizes of about 200-500 mu m, which can be served as a sacrificial framework, obstructing the raw materials aggregation and supporting the products in the pre-sintering process. The results demonstrate that the facile method performed on PU foam could effectively suppress the growth of grains. Scanning electron microscopy indicates that the Li1.2Mn0.54Ni0.13Co0.13O2 particles have a size of 100-600 nm and mainly distributed between 200-300 nm. Moreover, it displays excellent cycle performance with high capacity retention rate of 85.3% after 100 cycles at a current density of 20mA g(-1).
引用
收藏
页数:7
相关论文
共 36 条
[1]   Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2 [J].
Armstrong, A. Robert ;
Holzapfel, Michael ;
Novak, Petr ;
Johnson, Christopher S. ;
Kang, Sun-Ho ;
Thackeray, Michael M. ;
Bruce, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (26) :8694-8698
[2]   A Li-Rich Layered Cathode Material with Enhanced Structural Stability and Rate Capability for Li-on Batteries [J].
Ates, Mehmet Nurullah ;
Mukerjee, Sanjeev ;
Abraham, K. M. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (03) :A355-A363
[3]  
Bhaskar A, 2015, ADV ENERGY MATER, V5, P197
[4]   Surfactant-coassisted sol-gel synthesis to prepare LiNiyMnyCo1-2yO2 with improved electrochemical behavior [J].
Bhuvaneswari, D. ;
Gangulibabu ;
Kalaiselvi, N. .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2012, 16 (11) :3667-3674
[5]   Monodisperse Li1.2Mn0.6Ni0.2O2 microspheres with enhanced lithium storage capability [J].
Cheng, Fuquan ;
Xin, Yuelong ;
Chen, Jitao ;
Lu, Li ;
Zhang, Xinxiang ;
Zhou, Henghui .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (17) :5301-5308
[6]   Effect of synthetic routes on the rate performance of Li-rich layered Li1.2Mn0.56Ni0.12Co0.12O2 [J].
Fu, Fang ;
Wang, Qi ;
Deng, Ya-Ping ;
Shen, Chong-Heng ;
Peng, Xin-Xing ;
Huang, Ling ;
Sun, Shi-Gang .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (09) :5197-5203
[7]   Surface structural conversion and electrochemical enhancement by heat treatment of chemical pre-delithiation processed lithium-rich layered cathode material [J].
Han, Shaojie ;
Qiu, Bao ;
Wei, Zhen ;
Xia, Yonggao ;
Liu, Zhaoping .
JOURNAL OF POWER SOURCES, 2014, 268 :683-691
[8]   Preparation of lithium-rich layered oxide micro-spheres using a slurry spray-drying process [J].
Hou, Mengyan ;
Guo, Shaoshuai ;
Liu, Jinlong ;
Yang, Jun ;
Wang, Yonggang ;
Wang, Congxiao ;
Xia, Yongyao .
JOURNAL OF POWER SOURCES, 2015, 287 :370-376
[9]   Direct In situ Observation of Li2O Evolution on Li-Rich High-Capacity Cathode Material, Li[NixLi(1-2x)/3Mn(2-x)/3]O2 (0 ≤ x ≤ 0.5) [J].
Hy, Sunny ;
Felix, Felix ;
Rick, John ;
Su, Wei-Nien ;
Hwang, Bing Joe .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (03) :999-1007
[10]  
Jarvis K, 2013, J MATER CHEM A, V2, P1353