Affine invariant detection: Edge maps, anisotropic diffusion, and active contours

被引:30
作者
Olver, PJ [1 ]
Sapiro, G
Tannenbaum, A
机构
[1] Univ Minnesota, Dept Math, Minneapolis, MN 55455 USA
[2] Univ Minnesota, Dept Elect Engn, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
affine invariant detection; denoising; segmentation; affine scale-space; affine gradient; active contours; gradient flows; geodesics; invariant metrics;
D O I
10.1023/A:1006295328209
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we undertake a systematic investigation of affine invariant object detection and image denoising. Edge detection is first presented from the point of view of the affine invariant scale-space obtained by curvature based motion of the image level-sets. In this case, affine invariant maps are derived as a weighted difference of images at different scales. We then introduce the affine gradient as an affine invariant differential function of lowest possible order with qualitative behavior similar to the Euclidean gradient magnitude. These edge detectors are the basis for the extension of the affine invariant scale-space to a complete affine flow for image denoising and simplification, and to define affine invariant active contours for object detection and edge integration. The active contours are obtained as a gradient flow in a conformally Euclidean space defined by the image on which the object is to be detected. That is, we show that objects can be segmented in an affine invariant manner by computing a path of minimal weighted affine distance, the weight being given by functions of the affine edge detectors. The gradient path is computed via an algorithm which allows to simultaneously detect any number of objects independently of the initial curve topology. Based on the same theory of affine invariant gradient flows we show that the affine geometric heat flow is minimizing, in an affine invariant form, the area enclosed by the curve.
引用
收藏
页码:45 / 77
页数:33
相关论文
共 85 条
[1]   AXIOMS AND FUNDAMENTAL EQUATIONS OF IMAGE-PROCESSING [J].
ALVAREZ, L ;
GUICHARD, F ;
LIONS, PL ;
MOREL, JM .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1993, 123 (03) :199-257
[2]   IMAGE SELECTIVE SMOOTHING AND EDGE-DETECTION BY NONLINEAR DIFFUSION .2. [J].
ALVAREZ, L ;
LIONS, PL ;
MOREL, JM .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1992, 29 (03) :845-866
[4]   On the affine heat equation for non-convex curves [J].
Angenent, S ;
Sapiro, G ;
Tannenbaum, A .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 11 (03) :601-634
[5]  
[Anonymous], P 3 ECCV STOCKH SWED
[6]  
[Anonymous], MODERN GEOMETRY METH
[7]   Affine invariant segmentation by variational method [J].
Ballester, C ;
Caselles, V ;
Gonzalez, M .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1996, 56 (01) :294-325
[8]  
Blake A., 1992, ACTIVE VISION
[9]  
Blaschke W., 1923, VORLESUNGEN DIFFEREN, VII
[10]   FITTING CONIC SECTIONS TO SCATTERED DATA [J].
BOOKSTEIN, FL .
COMPUTER GRAPHICS AND IMAGE PROCESSING, 1979, 9 (01) :56-71