Q-Extension of Starlike Functions Subordinated with a Trigonometric Sine Function

被引:14
作者
Islam, Saeed [1 ,2 ]
Khan, Muhammad Ghaffar [3 ]
Ahmad, Bakhtiar [4 ]
Arif, Muhammad [3 ]
Chinram, Ronnason [5 ]
机构
[1] Ton Duc Thang Univ, Informetr Res Grp, Ho Chi Minh City 70000, Vietnam
[2] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City 70000, Vietnam
[3] Abdul Wali Khan Univ Mardan, Dept Math, Mardan 23200, Pakistan
[4] Govt Degree Coll Mardan, Mardan 23200, Pakistan
[5] Prince Songkla Univ, Div Computat Sci, Fac Sci, Hat Yai 90110, Songkhla, Thailand
关键词
starlike functions; subordination; q-derivative operator; sine function; PARTIAL-SUMS; SUBCLASS; RADIUS;
D O I
10.3390/math8101676
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main purpose of this article is to examine the q-analog of starlike functions connected with a trigonometric sine function. Further, we discuss some interesting geometric properties, such as the well-known problems of Fekete-Szego, the necessary and sufficient condition, the growth and distortion bound, closure theorem, convolution results, radii of starlikeness, extreme point theorem and the problem with partial sums for this class.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 52 条
[21]   Some class of analytic functions related to conic domains [J].
Kanas, Stanislawa ;
Raducanu, Dorina .
MATHEMATICA SLOVACA, 2014, 64 (05) :1183-1196
[22]   On Booth lemniscate and starlike functions [J].
Kargar, Rahim ;
Ebadian, Ali ;
Sokol, Janusz .
ANALYSIS AND MATHEMATICAL PHYSICS, 2019, 9 (01) :143-154
[23]   Some Applications of a New Integral Operator in q-Analog for Multivalent Functions [J].
Khan, Qaiser ;
Arif, Muhammad ;
Raza, Mohsan ;
Srivastava, Gautam ;
Tang, Huo ;
Rehman, Shafiq Ur .
MATHEMATICS, 2019, 7 (12)
[24]  
Kumar S, 2016, SOUTHEAST ASIAN BULL, V40, P199
[25]  
MA WC, 1994, C PR LECT NOTE APPL, V1, P157
[26]   On a Subclass of Strongly Starlike Functions Associated with Exponential Function [J].
Mendiratta, Rajni ;
Nagpal, Sumit ;
Ravichandran, V. .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2015, 38 (01) :365-386
[27]   2ND ORDER DIFFERENTIAL INEQUALITIES IN COMPLEX PLANE [J].
MILLER, SS ;
MOCANU, PT .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1978, 65 (02) :289-305
[28]  
MILLER SS, 1981, MICH MATH J, V28, P157
[29]   Partial sums of certain classes of analytic functions [J].
Owa, S ;
Srivastava, HM ;
Saito, N .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2004, 81 (10) :1239-1256
[30]   Radius of convexity of partial sums of functions in the close-to-convex family [J].
Ponnusamy, Saminathan ;
Sahoo, Swadesh Kumar ;
Yanagihara, Hiroshi .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 95 :219-228