Modeling a Clamped Boring Bar using Euler-Bernoulli Beam Models with Various Boundary Conditions

被引:0
|
作者
Smirnova, T. [1 ]
Akesson, H. [1 ,2 ]
Claesson, I. [1 ]
Hakansson, L. [1 ]
Lagoe, T. [2 ]
机构
[1] Blekinge Inst Technol, Dept Signal Proc, S-37225 Ronneby, Sweden
[2] Acticut Int AB, S-31132 Falkenberg, Sweden
来源
MATHEMATICAL MODELING OF WAVE PHENOMENA | 2009年 / 1106卷
关键词
boring bar; Euler-Bernoulli model; multi-span models;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper addresses modeling of a clamped boring bar using Euler-Bernoulli beam theory. Euler-Bernoulli beams with a number of different boundary conditions were used to model a clamped boring bar. Estimates of the boring bar's natural frequencies and mode shapes were produced with each of the boring bar models. The estimates produced by the distributed-parameter system models are compared with eigenfrequencies and mode shapes estimated based on experimental modal analysis of the actual boring bar clamped in a lathe.
引用
收藏
页码:149 / +
页数:2
相关论文
共 50 条
  • [31] Numerical recovery of material parameters in Euler-Bernoulli beam models
    Smith, Ralph C.
    Bowers, Kenneth L.
    Vogel, Curtis R.
    Journal of Mathematical Systems, Estimation, and Control, 1997, 7 (02): : 157 - 195
  • [32] Dynamic modeling and nonlinear boundary control of hybrid Euler-Bernoulli beam system with a tip mass
    Tavasoli, Ali
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART K-JOURNAL OF MULTI-BODY DYNAMICS, 2015, 229 (01) : 3 - 15
  • [33] PDE Boundary Control for Euler-Bernoulli Beam Using a Two Stage Perturbation Observer
    Paranjape, Aditya A.
    Guan, Jinyu
    Chung, Soon-Jo
    Krstic, Miroslav
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 4442 - 4448
  • [34] Arbitrary Decay Rate for Euler-Bernoulli Beam by Backstepping Boundary Feedback
    Smyshlyaev, Andrey
    Guo, Bao-Zhu
    Krstic, Miroslav
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (05) : 1134 - 1140
  • [35] The Euler-Bernoulli beam equation with boundary dissipation of fractional derivative type
    Achouri, Zineb
    Amroun, Nour Eddine
    Benaissa, Abbes
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (11) : 3837 - 3854
  • [36] Sliding Mode Boundary Control of an Euler-Bernoulli Beam Subject to Disturbances
    Karagiannis, Dimitri
    Radisavljevic-Gajic, Verica
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2018, 63 (10) : 3442 - 3448
  • [37] The Exact Frequency Equations for the Euler-Bernoulli Beam Subject to Boundary Damping
    Biselli, Angela
    Coleman, Matthew P.
    INTERNATIONAL JOURNAL OF ACOUSTICS AND VIBRATION, 2020, 25 (02): : 183 - 189
  • [38] Stability analysis of Euler-Bernoulli beam with input delay in the boundary control
    Shang, Ying Feng
    Xu, Gen Qi
    Chen, Yun Lan
    ASIAN JOURNAL OF CONTROL, 2012, 14 (01) : 186 - 196
  • [39] Sliding Mode Boundary Control for an Euler-Bernoulli Beam with Boundary Disturbances and Parameter Variations
    Karagiannis, Dimitri
    Radisavlejevic-Gajic, Verica
    2014 AMERICAN CONTROL CONFERENCE (ACC), 2014, : 4536 - 4542
  • [40] Global structure of positive solutions for semipositone nonlinear Euler-Bernoulli beam equation with Neumann boundary conditions
    Wang, Jingjing
    Gao, Chenghua
    Lu, Yanqiong
    QUAESTIONES MATHEMATICAE, 2023, 46 (04) : 641 - 669