Modeling a Clamped Boring Bar using Euler-Bernoulli Beam Models with Various Boundary Conditions

被引:0
|
作者
Smirnova, T. [1 ]
Akesson, H. [1 ,2 ]
Claesson, I. [1 ]
Hakansson, L. [1 ]
Lagoe, T. [2 ]
机构
[1] Blekinge Inst Technol, Dept Signal Proc, S-37225 Ronneby, Sweden
[2] Acticut Int AB, S-31132 Falkenberg, Sweden
来源
MATHEMATICAL MODELING OF WAVE PHENOMENA | 2009年 / 1106卷
关键词
boring bar; Euler-Bernoulli model; multi-span models;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper addresses modeling of a clamped boring bar using Euler-Bernoulli beam theory. Euler-Bernoulli beams with a number of different boundary conditions were used to model a clamped boring bar. Estimates of the boring bar's natural frequencies and mode shapes were produced with each of the boring bar models. The estimates produced by the distributed-parameter system models are compared with eigenfrequencies and mode shapes estimated based on experimental modal analysis of the actual boring bar clamped in a lathe.
引用
收藏
页码:149 / +
页数:2
相关论文
共 50 条
  • [1] Matching Boundary Conditions for the Euler-Bernoulli Beam
    Feng, Yaoqi
    Wang, Xianming
    SHOCK AND VIBRATION, 2021, 2021
  • [2] Artificial boundary conditions for Euler-Bernoulli beam equation
    Tang, Shao-Qiang
    Karpov, Eduard G.
    ACTA MECHANICA SINICA, 2014, 30 (05) : 687 - 692
  • [3] Artificial boundary conditions for Euler-Bernoulli beam equation
    Shao-Qiang Tang
    Eduard G. Karpov
    Acta Mechanica Sinica, 2014, 30 : 687 - 692
  • [4] Solvability of the clamped Euler-Bernoulli beam equation
    Baysal, Onur
    Hasanov, Alemdar
    APPLIED MATHEMATICS LETTERS, 2019, 93 : 85 - 90
  • [5] On initial conditions for a boundary stabilized hybrid Euler-Bernoulli beam
    Sujit K. Bose
    Proceedings of the Indian Academy of Sciences - Mathematical Sciences, 2001, 111 : 365 - 370
  • [6] On initial conditions for a boundary stabilized hybrid Euler-Bernoulli beam
    Bose, SK
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2001, 111 (03): : 365 - 370
  • [7] Boundary stabilization of a hybrid Euler-Bernoulli beam
    Gorain, GC
    Bose, SK
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1999, 109 (04): : 411 - 416
  • [8] Boundary stabilization of a hybrid Euler-Bernoulli beam
    Fernandes, Marco A. A.
    Carneiro, Miriam S.
    Munoz Rivera, Jaime E.
    APPLICABLE ANALYSIS, 2020, 99 (16) : 2917 - 2926
  • [9] On the vibration of the Euler-Bernoulli beam with clamped ends deflection constraints
    Krys'ko, VA
    Awrejcewicz, J
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (06): : 1867 - 1878
  • [10] DYNAMIC BOUNDARY CONTROL OF A EULER-BERNOULLI BEAM
    MORGUL, O
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1992, 37 (05) : 639 - 642