Equilibrium Fluctuations for the Symmetric Exclusion Process on a Compact Riemannian Manifold

被引:0
作者
van Ginkel, Bart [1 ]
Redig, Frank [1 ]
机构
[1] Delft Univ Technol, Delft, Netherlands
关键词
interacting particle systems; fluctuation fields; Riemannian manifolds; generalized Ornstein-Uhlenbeck process;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the Symmetric Exclusion Process on a compact Riemannian manifold, as introduced in [6]. There it was shown that the hydrodynamic limit satisfies the heat equation. In this paper we study the equilibrium fluctuations around this hydrodynamic limit. We define the fluctuation fields as functionals acting on smooth functions on the manifold and we show that they converge in distribution in the path space to a generalized Ornstein-Uhlenbeck process. This is done by proving tightness and by showing that the limiting fluctuations satisfy the corresponding martingale problem.
引用
收藏
页码:29 / 51
页数:23
相关论文
共 13 条
  • [1] Nuclear Space Facts, Strange and Plain
    Becnel, Jeremy
    Sengupta, Ambar
    [J]. MATHEMATICS, 2016, 4 (04):
  • [2] Asymptotic Behavior of Density in the Boundary-Driven Exclusion Process on the Sierpinski Gasket
    Chen, Joe P.
    Goncalves, Patricia
    [J]. MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2021, 24 (03)
  • [3] Christensen S.K., 1985, LINEAR STOCHASTIC DI
  • [4] DeMasi A., 2006, MATH METHODS HYDRODY
  • [5] Non-equilibrium fluctuations for the SSEP with a slow bond
    Erhard, D.
    Franco, T.
    Goncalves, P.
    Neumann, A.
    Tavares, M.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (02): : 1099 - 1128
  • [6] JAKUBOWSKI A, 1986, ANN I H POINCARE-PR, V22, P263
  • [7] Jara M, 2018, Arxiv, DOI arXiv:1810.09526
  • [8] Hydrodynamic Limit for a Zero-Range Process in the Sierpinski Gasket
    Jara, Milton
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 288 (02) : 773 - 797
  • [9] Kipnis C., 1999, SCALING LIMITS INTER, V320, DOI DOI 10.1007/978-3-662-03752-2
  • [10] Liggett T M., 2010, Continuous Time Markov Processes: an Introduction, V113