A RIEMANN PROBLEM AT A JUNCTION OF OPEN CANALS

被引:11
作者
Goudiaby, Mouhamadou Samsidy [1 ]
Kreiss, Gunilla [2 ]
机构
[1] Univ Gaston Berger St Louis, Lab Anal Numer & Informat, St Louis, Senegal
[2] Uppsala Univ, Dept Informat Technol, Div Comp Sci, S-75105 Uppsala, Sweden
关键词
Riemann problem; Saint-Venant equations; hyperbolic systems; open canal network; SHALLOW-WATER EQUATIONS; NONLINEAR HYPERBOLIC SYSTEMS; CONSERVATION-LAWS; TRAFFIC FLOW; COUPLING CONDITIONS; GAS-DYNAMICS; NETWORKS; CONTROLLABILITY; TOPOGRAPHY;
D O I
10.1142/S021989161350015X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a Riemann problem at a junction of a star-like network of open canals. The network is modeled as three canals and a junction where all canals come together. The flow in the network is subcritical and given by 1D Saint-Venant equations in each canal and special conditions at the junction. We consider the symmetric case where two of the canals are identical. First, we show that the linearized junction Riemann problem has always a unique solution. Second, we show that under certain condition, there is a unique solution to the nonlinear junction Riemann problem. There are also cases where there is no solution.
引用
收藏
页码:431 / 460
页数:30
相关论文
共 36 条
[11]  
Colombo RM, 2006, NETW HETEROG MEDIA, V1, P495
[12]   ON THE MODELLING AND MANAGEMENT OF TRAFFIC [J].
Colombo, Rinaldo M. ;
Goatin, Paola ;
Rosini, Massimiliano D. .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2011, 45 (05) :853-872
[13]   ROAD NETWORKS WITH PHASE TRANSITIONS [J].
Colombo, Rinaldo M. ;
Goatin, Paola ;
Piccoli, Benedetto .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2010, 7 (01) :85-106
[14]  
Cunge J.A., 1980, PRACTICAL ASPECTS CO
[15]   Boundary feedback control in networks of open channels [J].
de Halleux, J ;
Prieur, C ;
Coron, JM ;
d'Andréa-Novel, B ;
Bastin, G .
AUTOMATICA, 2003, 39 (08) :1365-1376
[16]  
de Saint-Venant A.J. C. Barr'e., 1871, Comptes rendus de l'Acad'emie des Sciences, V73, P148
[17]   Traffic flow on a road network using the aw-rascle model [J].
Garavello, M ;
Piccoli, B .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2006, 31 (02) :243-275
[18]   The numerical interface coupling of nonlinear hyperbolic systems of conservation laws: II. The case of systems [J].
Godlewski, E ;
Le Thanh, KC ;
Raviart, PA .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (04) :649-692
[19]  
Godlewski E, 2004, NUMER MATH, V97, P81, DOI 10.1007/s00211-003-0438-5
[20]   Exact boundary controllability of unsteady supercritical flows in a tree-like network of open canals [J].
Gu, Qilong .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2008, 31 (12) :1497-1508