Global-wellposedness of 2D Boussinesq equations with mixed partial temperature-dependent viscosity and thermal diffusivity

被引:16
作者
Jiu, Quansen [1 ]
Liu, Jitao [2 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[2] Univ Fed Rio de Janeiro, Inst Matemat, Cidade Univ Ilha Fundao, BR-21941909 Rio De Janeiro, RJ, Brazil
基金
中国国家自然科学基金;
关键词
Boussinesq equations; Global well-posedness; Horizontal temperature-dependent viscosity; Vertical thermal diffusivity; WELL-POSEDNESS; REGULARITY; SYSTEM;
D O I
10.1016/j.na.2015.11.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the global well-posedness of 2D anisotropic nonlinear Boussinesq equations with horizontal temperature-dependent viscosity and vertical thermal diffusivity in the whole space. Due to lacking vertical viscosity and horizontal thermal diffusivity, there is no smooth effect in those directions. Besides, the nonlinearity of temperature-dependent viscosity gives rise to new difficulties. To solve it, we make full use of the incompressible condition and anisotropic inequalities to obtain the H-1 estimates of velocity field and H1+s estimates of temperature for any s is an element of ( 0, 1/2]. In the end, we build up a uniqueness criterion which together with the a priori estimates admits a unique global solution without any smallness assumptions. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:227 / 239
页数:13
相关论文
共 18 条
[1]  
[Anonymous], 1997, PARTIAL DIFFERENTIAL
[2]  
[Anonymous], 1984, Navier-Stokes equations, theory and numerical analysis
[3]  
Cannon J., 1980, Lecture Notes in Math., V771, P129
[4]   Global Regularity for the Two-Dimensional Anisotropic Boussinesq Equations with Vertical Dissipation [J].
Cao, Chongsheng ;
Wu, Jiahong .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 208 (03) :985-1004
[5]   Global regularity for the 2D Boussinesq equations with partial viscosity terms [J].
Chae, Dongho .
ADVANCES IN MATHEMATICS, 2006, 203 (02) :497-513
[6]   GLOBAL EXISTENCE RESULTS FOR THE ANISOTROPIC BOUSSINESQ SYSTEM IN DIMENSION TWO [J].
Danchin, Raphael ;
Paicu, Marius .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2011, 21 (03) :421-457
[7]  
Gilbarg D., 1977, ELLIPTIC PARTIAL DIF, V224
[8]  
Hou TY, 2005, DISCRETE CONT DYN-A, V12, P1
[9]  
Li H., 2013, INITIAL BOUNDARY VAL
[10]  
Lorca S., 1996, Mate. Contemp, V11, P71, DOI [10.21711/231766361996/rmc115, DOI 10.21711/231766361996/RMC115]