On error bounds for approximation schemes for non-convex degenerate elliptic equations

被引:17
作者
Jakobsen, ER [1 ]
机构
[1] Norwegian Univ Sci & Technol, Dept Math Sci, N-7491 Trondheim, Norway
关键词
error bounds; numerical schemes; degenerate elliptic equations; nonconvex equations; Isaacs equations; finite difference methods; viscosity solutions;
D O I
10.1023/B:BITN.0000039390.33444.f2
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper we provide estimates of the rates of convergence of monotone approximation schemes for non-convex equations in one space-dimension. The equations under consideration are the degenerate elliptic Isaacs equations with x-depending coefficients, and the results applies in particular to certain finite difference methods and control schemes based on the dynamic programming principle. Recently, Krylov, Barles, and Jakobsen obtained similar estimates for convex Hamilton-Jacobi-Bellman equations in arbitrary space-dimensions. Our results are only valid in one space-dimension, but they are the first results of this type for non-convex second-order equations.
引用
收藏
页码:269 / 285
页数:17
相关论文
共 30 条
[1]  
[Anonymous], APPL MATH OPT
[2]  
Bardi M, 1998, ANN INT SOC DYN GAME, V4, P105
[3]  
Bardi M, 1997, Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Foundations and Applications, DOI [DOI 10.1007/978-0-8176-4755-1, 10.1007/978-0-8176-4755-1]
[4]  
Barles G., 1991, Asymptotic Analysis, V4, P271
[5]   On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations [J].
Barles, G ;
Jakobsen, ER .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2002, 36 (01) :33-54
[6]  
BARLES G, ERROR BOUNDS MONOTON
[7]   Consistency of generalized finite difference schemes for the stochastic HJB equation [J].
Bonnans, JF ;
Zidani, H .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (03) :1008-1021
[8]   Interior C2,α regularity theory for a class of nonconvex fully nonlinear elliptic equations [J].
Cabré, X ;
Caffarelli, LA .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2003, 82 (05) :573-612
[9]  
Caffarelli L. A., 1995, AMS C PUBLICATIONS, V43
[10]   AN APPROXIMATION SCHEME FOR THE OPTIMAL-CONTROL OF DIFFUSION-PROCESSES [J].
CAMILLI, F ;
FALCONE, M .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1995, 29 (01) :97-122