Estimation for Battery State of Charge Based on Temperature Effect and Fractional Extended Kalman Filter

被引:27
作者
Chang, Chengcheng [1 ]
Zheng, Yanping [1 ]
Yu, Yang [1 ]
机构
[1] Nanjing Forestry Univ, Coll Automobile & Traff Engn, Nanjing 210037, Peoples R China
关键词
LiFePO4; battery; SOC estimation; fractional order; parameter identification; extended Kalman filter; LITHIUM-ION BATTERIES; OPEN-CIRCUIT-VOLTAGE; OF-CHARGE; NEURAL-NETWORKS; SOC ESTIMATION; MODEL;
D O I
10.3390/en13225947
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The electric vehicle has become an important development direction of the automobile industry, and the lithium-ion power battery is the main energy source of electric vehicles. The accuracy of state of charge (SOC) estimation directly affects the performance of the vehicle. In this paper, the first order fractional equivalent circuit model of a lithium iron phosphate battery was established. Battery capacity tests with different charging and discharging rates and open circuit voltage tests were carried out under different ambient temperatures. The conversion coefficient of charging and discharging capacity and the simplified open circuit voltage model considering the hysteresis characteristics of the battery were proposed. The parameters of the first order fractional equivalent circuit model were identified by using a particle swarm optimization algorithm with dynamic inertia weight. Finally, the recursive formula of a fractional extended Kalman filter was derived, and the battery SOC was estimated under continuous Dynamic Stress Test (DST) conditions. The results show that the estimation method has high accuracy and strong robustness.
引用
收藏
页数:24
相关论文
共 38 条
[1]   Battery state-of-charge estimator using the SVM technique [J].
Alvarez Anton, J. C. ;
Garcia Nieto, P. J. ;
de Cos Juez, F. J. ;
Sanchez Lasheras, F. ;
Gonzalez Vega, M. ;
Roqueni Gutierrez, M. N. .
APPLIED MATHEMATICAL MODELLING, 2013, 37 (09) :6244-6253
[2]  
[Anonymous], 2016, THESIS
[3]   Accuracy improvement of SOC estimation in lithium-ion batteries [J].
Awadallah, Mohamed A. ;
Venkatesh, Bala .
JOURNAL OF ENERGY STORAGE, 2016, 6 :95-104
[4]   State-of-Charge Estimation for Lithium-Ion Batteries Using Neural Networks and EKF [J].
Charkhgard, Mohammad ;
Farrokhi, Mohammad .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2010, 57 (12) :4178-4187
[5]   State-of-charge estimation of Li-ion batteries using deep neural networks: A machine learning approach [J].
Chemali, Ephrem ;
Kollmeyer, Phillip J. ;
Preindl, Matthias ;
Emadi, Ali .
JOURNAL OF POWER SOURCES, 2018, 400 :242-255
[6]   Long Short-Term Memory Networks for Accurate State-of-Charge Estimation of Li-ion Batteries [J].
Chemali, Ephrem ;
Kollmeyer, Phillip J. ;
Preindl, Matthias ;
Ahmed, Ryan ;
Emadi, Ali .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2018, 65 (08) :6730-6739
[7]   Battery-Management System (BMS) and SOC Development for Electrical Vehicles [J].
Cheng, K. W. E. ;
Divakar, B. P. ;
Wu, Hongjie ;
Ding, Kai ;
Ho, Ho Fai .
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2011, 60 (01) :76-88
[8]  
Cheng Z., 2015, J HUNAN U NAT SCI, V42, P63, DOI [10.16339/j.cnki.hdxbzkb.2015.04.010, DOI 10.16339/J.CNKI.HDXBZKB.2015.04.010]
[9]   Online cell SOC estimation of Li-ion battery packs using a dual time-scale Kalman filtering for EV applications [J].
Dai, Haifeng ;
Wei, Xuezhe ;
Sun, Zechang ;
Wang, Jiayuan ;
Gu, Weijun .
APPLIED ENERGY, 2012, 95 :227-237
[10]   An online model-based method for state of energy estimation of lithium-ion batteries using dual filters [J].
Dong, Guangzhong ;
Chen, Zonghai ;
Wei, Jingwen ;
Zhang, Chenbin ;
Wang, Peng .
JOURNAL OF POWER SOURCES, 2016, 301 :277-286