An Overview of Abdominal Multi-organ Segmentation

被引:4
作者
Li, Qiang [1 ]
Song, Hong [1 ]
Chen, Lei [1 ]
Meng, Xianqi [2 ]
Yang, Jian [2 ]
Zhang, Le [3 ]
机构
[1] Beijing Inst Technol, Sch Comp Sci & Technol, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Sch Opt & Elect, Beijing, Peoples R China
[3] Sichuan Univ, Coll Comp Sci, Chengdu, Peoples R China
基金
国家重点研发计划;
关键词
Multi-organ segmentation; deep learning; datasets for AMOS; segmentation performance; abdomen; magnetic resonance; PROBABILISTIC ATLASES; ORGAN SEGMENTATION; NEURAL-NETWORK; CT; ANATOMY; SHAPE;
D O I
10.2174/1574893615999200425232601
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The segmentation of multiple abdominal organs of the human body from images with different modalities is challenging because of the inter-subject variance among abdomens, as well as the complex intra-subject variance among organs. In this paper, the recent methods proposed for abdominal multi-organ segmentation (AMOS) on medical images in the literature are reviewed. The AMOS methods can be categorized into traditional and deep learning-based methods. First, various approaches, techniques, recent advances, and related problems under both segmentation categories are explained. Second, the advantages and disadvantages of these methods are discussed. A summary of some public datasets for AMOS is provided. Finally, AMOS remains an open issue, and the combination of different methods can achieve improved segmentation performance.
引用
收藏
页码:866 / 877
页数:12
相关论文
共 87 条
[31]  
Heinrich MP, 2016, INT C MED IM COMP CO
[32]   Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets [J].
Hu, Peijun ;
Wu, Fa ;
Peng, Jialin ;
Bao, Yuanyuan ;
Chen, Feng ;
Kong, Dexing .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2017, 12 (03) :399-411
[33]   Cloud-Based Evaluation of Anatomical Structure Segmentation and Landmark Detection Algorithms: VISCERAL Anatomy Benchmarks [J].
Jimenez-del-Toro, Oscar ;
Muller, Henning ;
Krenn, Markus ;
Gruenberg, Katharina ;
Taha, Abdel Aziz ;
Winterstein, Marianne ;
Eggel, Ivan ;
Foncubierta-Rodriguez, Antonio ;
Goksel, Orcun ;
Jakab, Andres ;
Kontokotsios, Georgios ;
Langs, Georg ;
Menze, Bjoern H. ;
Fernandez, Tomas Salas ;
Schaer, Roger ;
Walleyo, Anna ;
Weber, Marc-Andre ;
Cid, Yashin Dicente ;
Gass, Tobias ;
Heinrich, Mattias ;
Jia, Fucang ;
Kahl, Fredrik ;
Kechichian, Razmig ;
Mai, Dominic ;
Spanier, Assaf B. ;
Vincent, Graham ;
Wang, Chunliang ;
Wyeth, Daniel ;
Hanbury, Allan .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (11) :2459-2475
[34]  
Kakeya H, INT C MED IM COMP CO
[35]   SNAKES - ACTIVE CONTOUR MODELS [J].
KASS, M ;
WITKIN, A ;
TERZOPOULOS, D .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1987, 1 (04) :321-331
[36]   Automatic Multiorgan Segmentation via Multiscale Registration and Graph Cut [J].
Kechichian, Razmig ;
Valette, Sebastien ;
Desvignes, Michel .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (12) :2739-2749
[37]  
Kohlberger T, INT C MED IM COMP CO, DOI [10.1007/978-3-642-23626-6_42, DOI 10.1007/978-3-642-23626-6_42]
[38]  
Landman B., Miccai MultiAtlas Labeling Beyond the Cranial VaultWorkshop and Challenge,
[39]   Label Fusion in Atlas-Based Segmentation Using a Selective and Iterative Method for Performance Level Estimation (SIMPLE) [J].
Langerak, Thomas Robin ;
van der Heide, Uulke A. ;
Kotte, Alexis N. T. J. ;
Viergever, Max A. ;
van Vulpen, Marco ;
Pluim, Josien P. W. .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2010, 29 (12) :2000-2008
[40]  
Larsson M, 2016, SWED S IM AN 2016