Population dynamics of a tropical palm: use of a genetic algorithm for inverse parameter estimation

被引:15
|
作者
Cropper, WP
Anderson, PJ
机构
[1] Univ Florida, Sch Forest Resources & Conservat, Gainesville, FL 32611 USA
[2] Florida Museum Nat Hist, Gainesville, FL 32611 USA
关键词
palm; Iriartea deltoidea; matrix population model; genetic algorithm; inverse modeling;
D O I
10.1016/j.ecolmodel.2004.02.003
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The tropical palm species Iriartea deltoidea is an important resource in Amazonian Ecuador. Population models, based on short-term field measurements, have been used to analyze management scenarios for Iriartea sustainable harvesting. An existing matrix population model for Iriartea in secondary and mature forests could not adequately simulate the population dynamics from clearing to 30 years or more. In order to find a better model of the Iriartea population, we used inverse analysis with two optimization techniques (Golden Section search and genetic algorithm (GA)) to find fecundity and seedling demographic parameters that best matched the observed secondary forest (30 years after clearing) and mature forest size class distributions. Re-estimation of fecundity using the Golden Section optimization resulted in a good match to seedling numbers, but a poor tit for other size classes. Genetic algorithm optimization of fecundity and seedling survival and transition parameters found good fits from clearing to age 30 with an exponential or density-dependent model. In order to find a single model that described the population trajectory from clearing to mature forest, we used the genetic algorithm to best fit the observed size class distributions at age 30 and for the mature forest (assumed ages of 65-150 years). The genetic algorithm produced plausible density-dependent models for each of the assumed mature forests ages. Simulated seedling demographic parameters 40-60 years after clearing were similar to field estimates from 30-year-old and mature forest populations. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:119 / 127
页数:9
相关论文
共 50 条
  • [31] An approach of parameter estimation for a chaotic system based on genetic algorithm
    Dai, Dong
    Ma, Xi-Kui
    Li, Fu-Cai
    You, Yong
    Wuli Xuebao/Acta Physica Sinica, 2002, 51 (11):
  • [32] Parameter estimation of nonlinear muskingum models using genetic algorithm
    Mohan, S
    JOURNAL OF HYDRAULIC ENGINEERING-ASCE, 1997, 123 (02): : 137 - 142
  • [33] Parameter estimation for VLE calculation by global minimization: The genetic algorithm
    Alvarez, V. H.
    Larico, R.
    Ianos, Y.
    Aznar, M.
    BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING, 2008, 25 (02) : 409 - 418
  • [34] Parameter estimation of nonlinear Muskingum models using genetic algorithm
    Mohan, S.
    Journal of Hydraulic Engineering, 1997, 123 (02): : 137 - 142
  • [35] An approach of parameter estimation for a chaotic system based on genetic algorithm
    Dai, D
    Ma, XK
    Li, FC
    You, Y
    ACTA PHYSICA SINICA, 2002, 51 (11) : 2459 - 2462
  • [36] A DNA based genetic algorithm for parameter estimation in the hydrogenation reaction
    Chen, Xiao
    Wang, Ning
    Chemical Engineering Journal, 2009, 150 (2-3): : 527 - 535
  • [37] Genetic algorithm applied to simultaneous parameter estimation in bacterial growth
    Pedrozo, Hector A.
    Dallagnol, Andrea M.
    Schvezov, Carlos E.
    JOURNAL OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2021, 19 (01)
  • [38] Approach of parameter estimation for a chaotic system based on genetic algorithm
    Dai, Dong
    Ma, Xi-Kui
    Li, Fu-Cai
    You, Yong
    2002, Science Press (51):
  • [39] Parameter Estimation of the Bishop Photovoltaic Model Using a Genetic Algorithm
    Johana Restrepo-Cuestas, Bonie
    Montano, Jhon
    Andres Ramos-Paja, Carlos
    Adriana Trejos-Grisales, Luz
    Lucia Orozco-Gutierrez, Martha
    APPLIED SCIENCES-BASEL, 2022, 12 (06):
  • [40] The induction motor parameter estimation through an adaptive genetic algorithm
    Zhou, XY
    Cheng, HZ
    Wang, HF
    UPEC 2004: 39TH INTERNATIONAL UNIVERSITITIES POWER ENGINEERING CONFERENCE, VOLS 1-3, CONFERENCE PROCEEDINGS, 2005, : 494 - 498