POSITIVE AND NEGATIVE RESULTS ON THE NUMERICAL INDEX OF BANACH SPACES AND DUALITY

被引:5
作者
Martin, Miguel [1 ]
机构
[1] Univ Granada, Dept Anal Matemat, Fac Ciencias, E-18071 Granada, Spain
关键词
Numerical range; numerical index; duality; L-embedded; M-embedded;
D O I
10.1090/S0002-9939-09-09837-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the numerical index of an L-embedded space and that of its dual coincide. In particular, the numerical index of the predual of a real or complex von Neumann algebra or JBW*-triple coincides with the numerical index of the space. Also, we prove that when X is an M-embedded Banach space with numerical index 1, then every closed subspace of X** containing X also has numerical index 1 (in particular, X* and X** have numerical index 1). Finally, we show that any Banach space X containing a complemented copy of c(0) or a copy of l(infinity) admits an equivalent norm for which the numerical index of its dual space is strictly less than the index of the space. In the special case of a separable space X containing c(0), it is actually possible to renorm X with the maximum value of the numerical index (namely 1) while the numerical index of the dual is as small as possible (namely, 0 in the real case, 1/e in the complex case).
引用
收藏
页码:3067 / 3075
页数:9
相关论文
共 24 条
[1]  
ABRAMOVICH Y, 2002, GRADUATE TEXTS MATH, V50
[2]  
ABRAMOVICH YA, 2002, GRADUATE TEXTS MATH, V51
[3]  
Albiac F, 2006, GRAD TEXTS MATH, V233, P1
[4]  
[Anonymous], 2001, IR MATH SOC B
[5]  
[Anonymous], 1993, LECT NOTES MATH
[6]  
Bonsall F.F., 1973, London Math. Soc. Lecture Note Ser., V10
[7]  
Bonsall F.F., 1971, London Mathematical Society Lecture Note Series, V2
[8]   Numerical index of Banach spaces and duality [J].
Boyko, Kostyantyn ;
Kadets, Vladimir ;
Martin, Miguel ;
Werner, Dirk .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2007, 142 :93-102
[9]   Properties of lush spaces and applications to Banach spaces with numerical index 1 [J].
Boyko, Kostyantyn ;
Kadets, Vladimir ;
Martin, Miguel ;
Meri, Javier .
STUDIA MATHEMATICA, 2009, 190 (02) :117-133
[10]  
DUNCAN J, 1970, J LONDON MATH SOC, V2, P481