An efficient Levenberg-Marquardt method with a new LM parameter for systems of nonlinear equations

被引:33
作者
Amini, Keyvan [1 ]
Rostami, Faramarz [1 ]
Caristi, Giuseppe [2 ]
机构
[1] Razi Univ, Dept Math, Fac Sci, Kermanshah, Iran
[2] Univ Messina, Dept Econ, Messina, Italy
关键词
Levenberg-Marquardt method; singular nonlinear equations; local error bound condition; nonmonotone technique; global and quadratic convergence; NONMONOTONE LINE SEARCH; TRUST-REGION METHOD; UNCONSTRAINED OPTIMIZATION; NEWTON METHOD; ALGORITHM;
D O I
10.1080/02331934.2018.1435655
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A modified Levenberg-Marquardt method for solving singular systems of nonlinear equations was proposed by Fan [J Comput Appl Math. 2003; 21; 625-636]. Using trust region techniques, the global and quadratic convergence of the method were proved. In this paper, to improve this method, we decide to introduce a new Levenberg-Marquardt parameter while also incorporate a new nonmonotone technique to this method. The global and quadratic convergence of the new method is proved under the local error bound condition. Numerical results show the new algorithm is efficient and promising.
引用
收藏
页码:637 / 650
页数:14
相关论文
共 22 条
[1]   An efficient nonmonotone trust-region method for unconstrained optimization [J].
Ahookhosh, Masoud ;
Amini, Keyvan .
NUMERICAL ALGORITHMS, 2012, 59 (04) :523-540
[2]   A Nonmonotone trust region method with adaptive radius for unconstrained optimization problems [J].
Ahookhosh, Masoud ;
Amini, Keyvan .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (03) :411-422
[3]   Three-steps modified Levenberg-Marquardt method with a new line search for systems of nonlinear equations [J].
Amini, Keyvan ;
Rostami, Faramarz .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 300 :30-42
[4]   A modified two steps Levenberg-Marquardt method for nonlinear equations [J].
Amini, Keyvan ;
Rostami, Faramarz .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 288 :341-350
[5]  
[Anonymous], 1990, Matrix Perturbation Theory, Computer Science and Scientific Computing
[6]  
[Anonymous], TRUST REGION METHODS, DOI [DOI 10.1137/1.9780898719857, 10.1137/1.9780898719857]
[7]  
[Anonymous], 1975, NONLINEAR PROGRAMMIN, DOI DOI 10.1016/B978-0-12-468650-2.50005-5
[8]   The effect of calmness on the solution set of systems of nonlinear equations [J].
Behling, Roger ;
Iusem, Alfredo .
MATHEMATICAL PROGRAMMING, 2013, 137 (1-2) :155-165
[9]   QUASI-NEWTON METHODS AND THEIR APPLICATION TO FUNCTION MINIMISATION [J].
BROYDEN, CG .
MATHEMATICS OF COMPUTATION, 1967, 21 (99) :368-&
[10]   NONMONOTONIC TRUST REGION ALGORITHM [J].
DENG, NY ;
XIAO, Y ;
ZHOU, FJ .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1993, 76 (02) :259-285