SpOT: Spatiotemporal Modeling for 3D Object Tracking

被引:5
|
作者
Stearns, Colton [1 ]
Rempe, Davis [1 ]
Li, Jie [2 ]
Ambrus, Rare [2 ]
Zakharov, Sergey [2 ]
Guizilini, Vitor [2 ]
Yang, Yanchao [1 ]
Guibas, Leonidas J. [1 ]
机构
[1] Stanford Univ, Stanford, CA 94305 USA
[2] Toyota Res Inst, Los Altos, CA USA
来源
COMPUTER VISION, ECCV 2022, PT XXXVIII | 2022年 / 13698卷
关键词
3D object detection; 3D object tracking; point clouds; LiDAR; Autonomous driving; NuScenes Dataset;
D O I
10.1007/978-3-031-19839-7_37
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
3D multi-object tracking aims to uniquely and consistently identify all mobile entities through time. Despite the rich spatiotemporal information available in this setting, current 3D tracking methods primarily rely on abstracted information and limited history, e.g. single-frame object bounding boxes. In this work, we develop a holistic representation of traffic scenes that leverages both spatial and temporal information of the actors in the scene. Specifically, we reformulate tracking as a spatiotemporal problem by representing tracked objects as sequences of time-stamped points and bounding boxes over a long temporal history. At each time-stamp, we improve the location and motion estimates of our tracked objects through learned refinement over the full sequence of object history. By considering time and space jointly, our representation naturally encodes fundamental physical priors such as object permanence and consistency across time. Our spatiotemporal tracking framework achieves state-of-the-art performance on the Waymo and nuScenes benchmarks.
引用
收藏
页码:639 / 656
页数:18
相关论文
共 50 条
  • [31] FANet: Improving 3D Object Detection with Position Adaptation
    Ye, Jian
    Zuo, Fushan
    Qian, Yuqing
    APPLIED SCIENCES-BASEL, 2023, 13 (13):
  • [32] Density Aware 3D Object Single Stage Detector
    Ning, Jingmei
    Da, Feipeng
    Gai, Shaoyan
    IEEE SENSORS JOURNAL, 2021, 21 (20) : 23108 - 23117
  • [33] SRFDet3D: Sparse Region Fusion based 3D Object Detection
    Erabati, Gopi Krishna
    Araujo, Helder
    NEUROCOMPUTING, 2024, 593
  • [34] Semantic Frustum Based VoxelNet for 3D Object Detection
    Chen, Feng
    Wu, Fei
    Huang, Qinghua
    Feng, Yujian
    Ge, Qi
    Ji, Yimu
    Hu, Chang-Hui
    Jing, Xiao-Yuan
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 7629 - 7634
  • [35] 3D Mask-Based Shape Loss Function for LIDAR Data for Improved 3D Object Detection
    Park, R.
    Lee, C.
    PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON VEHICLE TECHNOLOGY AND INTELLIGENT TRANSPORT SYSTEMS, VEHITS 2023, 2023, : 305 - 312
  • [36] CC-3DT: Panoramic 3D Object Tracking via Cross-Camera Fusion
    Fischer, Tobias
    Yang, Yung-Hsu
    Kumar, Suryansh
    Sun, Min
    Yu, Fisher
    CONFERENCE ON ROBOT LEARNING, VOL 205, 2022, 205 : 2294 - 2305
  • [37] Impact of LiDAR point cloud compression on 3D object detection evaluated on the KITTI dataset
    Martins, Nuno A. B.
    Cruz, Luis A. da Silva
    Lopes, Fernando
    EURASIP JOURNAL ON IMAGE AND VIDEO PROCESSING, 2024, 2024 (01)
  • [38] DS-Trans: A 3D Object Detection Method Based on a Deformable Spatiotemporal Transformer for Autonomous Vehicles
    Zhu, Yuan
    Xu, Ruidong
    Tao, Chongben
    An, Hao
    Wang, Huaide
    Sun, Zhipeng
    Lu, Ke
    REMOTE SENSING, 2024, 16 (09)
  • [39] Graph Neural Network and Spatiotemporal Transformer Attention for 3D Video Object Detection From Point Clouds
    Yin, Junbo
    Shen, Jianbing
    Gao, Xin
    Crandall, David J.
    Yang, Ruigang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (08) : 9822 - 9835
  • [40] MS23D: 2 3D: A 3D object detection method using multi-scale semantic feature points to construct 3D feature layer
    Shao, Yongxin
    Tan, Aihong
    Yan, Tianhong
    Sun, Zhetao
    Liu, Jiaxin
    NEURAL NETWORKS, 2024, 179