Some array type polynomials associated with special numbers and polynomials

被引:33
作者
Bayad, Abdelmejid [1 ]
Simsek, Yilmaz [2 ]
Srivastava, H. M. [3 ]
机构
[1] Univ Evry Val DEssonne, Lab Anal & Probabilites, F-91037 Evry, France
[2] Akdeniz Univ, Fac Sci, Dept Math, TR-07058 Antalya, Turkey
[3] Univ Victoria, Dept Math & Stat, Victoria, BC V8W 3R4, Canada
关键词
Bernoulli polynomials and Bernoulli numbers; Apostol-Bernoulli polynomials and Apostol-Bernoulli numbers; lambda-Bell numbers and lambda-Bell polynomials; lambda-Array polynomials; lambda-Stirling numbers of the second kind; GENERATING-FUNCTIONS; APOSTOL-BERNOULLI; EULER;
D O I
10.1016/j.amc.2014.06.086
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main objective in this paper is first to establish new identities for the lambda-Stirling type numbers of the second kind, the lambda-array type polynomials, the Apostol-Bernoulli polynomials and the Apostol-Bernoulli numbers. We then construct a lambda-delta operator and investigate various generating functions for the lambda-Bell type numbers and for some new polynomials associated with the lambda-array type polynomials. We also derive several other identities and relations for these polynomials and numbers. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:149 / 157
页数:9
相关论文
共 24 条
[1]   Shortened recurrence relations for Bernoulli numbers [J].
Agoh, Takashi ;
Dilcher, Karl .
DISCRETE MATHEMATICS, 2009, 309 (04) :887-898
[2]  
[Anonymous], 2012, INT J MATH COMPUT
[3]  
Cangul I.N., 2013, BOUNDARY VALUE PROB, V2013
[4]  
Cevik A.S., 2013, FIXED POINT THEORY A, V2013
[5]   A multiplication theorem for the Lerch zeta function and explicit representations of the Bernoulli and Euler polynomials [J].
Chang, CH ;
Ha, CW .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 315 (02) :758-767
[6]  
Comtet L., 1974, ADV COMBINATORICS AR
[7]  
Gould H.W., 1972, COMBINATORIAL IDENTI
[8]  
Kim T, 2002, RUSS J MATH PHYS, V9, P288
[9]  
Kim T., 2006, Trends Int. Math. Sci. Study, V9, P7
[10]   q-Euler numbers and polynomials associated with p-adic q-integrals [J].
Kim, Taekyun .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2007, 14 (01) :15-27