Synthesis and electrochemical properties of tin-doped MoS2 (Sn/MoS2) composites for lithium ion battery applications

被引:16
作者
Lu, Lin [1 ]
Min, Feixia [1 ]
Luo, Zhaohui [1 ]
Wang, Shiquan [1 ]
Teng, Fei [2 ]
Li, Guohua [3 ]
Feng, Chuanqi [1 ]
机构
[1] Hubei Univ, Hubei Collaborat Innovat Ctr Adv Organ Chem Mat, Minist Of Educ, Key Lab Synth & Applicat Organ Funct Mol, Wuhan 430062, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Jiangsu Key Lab Atmospher Environm Monitoring & P, Sch Environm Sci & Engn, Nanjing 210044, Jiangsu, Peoples R China
[3] Zhejiang Univ Technol, Sch Chem Engn & Mat Sci, Hangzhou 310032, Zhejiang, Peoples R China
关键词
Sn doping; MoS2; Solvothermal synthesis; Electrochemical properties; Anode material; Lithium ion battery; Energy storage; HYDROGEN EVOLUTION; PERFORMANCE; GRAPHENE; NANOSHEETS; CATALYST; STORAGE; ANODES;
D O I
10.1007/s11051-016-3677-6
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
SnO2-MoO3 composites were synthesized by using (NH4)(6)Mo7O24 center dot 4H(2)O and SnCl2 center dot 2H(2)O as raw materials through a simple solvothermal method followed by pyrolysis. Tin-doped MoS2 (Sn/MoS2) flowers have been synthesized by a solvothermal method followed with annealing in Ar(H-2) atmosphere, with SnO2-MoO3, thioacetamide (TAA), and urea as starting materials. The doping and the content of Sn-doping play crucial roles in the morphology and electrochemical performance of the MoS2. As anode materials for lithium ion battery (LIB), all Sn/MoS2 composites exhibit both higher reversible capacity and better cycling performance at current density of 200 mA g(-1), compared with MoS2 without Sn doping. The achieved discharge capacity for Sn/MoS2 composites is above 1000mAh g(-1) after 100 cycles with nearly 100% coulombic efficiency. The doping of metal Sn in MoS2 can improve the conductivity of MoS2 and significantly enhance its electrochemical properties. The good electrochemical performance suggests that the Sn/MoS2 composite could be a promising candidate as a novel anode material for LIB application. Our present work provides a new approach to the fabrication of anode materials for LIB applications.
引用
收藏
页数:12
相关论文
共 31 条
[1]   Preparation of MoS2-Coated Three-Dimensional Graphene Networks for High-Performance Anode Material in Lithium-Ion Batteries [J].
Cao, Xiehong ;
Shi, Yumeng ;
Shi, Wenhui ;
Rui, Xianhong ;
Yan, Qingyu ;
Kong, Jing ;
Zhang, Hua .
SMALL, 2013, 9 (20) :3433-3438
[2]   L-Cysteine-Assisted Synthesis of Layered MoS2/Graphene Composites with Excellent Electrochemical Performances for Lithium Ion Batteries [J].
Chang, Kun ;
Chen, Weixiang .
ACS NANO, 2011, 5 (06) :4720-4728
[3]   In situ synthesis of MoS2/graphene nanosheet composites with extraordinarily high electrochemical performance for lithium ion batteries [J].
Chang, Kun ;
Chen, Weixiang .
CHEMICAL COMMUNICATIONS, 2011, 47 (14) :4252-4254
[4]   Comparative study on MoS2 and WS2 for electrocatalytic water splitting [J].
Chen, Tzu-Yin ;
Chang, Yung-Huang ;
Hsu, Chang-Lung ;
Wei, Kung-Hwa ;
Chiang, Chia-Ying ;
Li, Lain-Jong .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (28) :12302-12309
[5]   Synthesis of SnO2/MoS2 composites with different component ratios and their applications as lithium ion battery anodes [J].
Chen, Yu ;
Lu, Jia ;
Wen, Shi ;
Lu, Li ;
Xue, Junmin .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (42) :17857-17866
[6]   Core-shell MoO3-MoS2 Nanowires for Hydrogen Evolution: A Functional Design for Electrocatalytic Materials [J].
Chen, Zhebo ;
Cummins, Dustin ;
Reinecke, Benjamin N. ;
Clark, Ezra ;
Sunkara, Mahendra K. ;
Jaramillo, Thomas F. .
NANO LETTERS, 2011, 11 (10) :4168-4175
[7]   Functional Materials for Rechargeable Batteries [J].
Cheng, Fangyi ;
Liang, Jing ;
Tao, Zhanliang ;
Chen, Jun .
ADVANCED MATERIALS, 2011, 23 (15) :1695-1715
[8]   Aligned carbon nanotube/sulfur composite cathodes with high sulfur content for lithium-sulfur batteries [J].
Cheng, Xin-Bing ;
Huang, Jia-Qi ;
Zhang, Qiang ;
Peng, Hong-Jie ;
Zhao, Meng-Qiang ;
Wei, Fei .
NANO ENERGY, 2014, 4 :65-72
[9]   Mixed conductivity and lithium diffusion in poly(ethylene oxide) molybdenum disulfide nanocomposites [J].
Gonzalez, G ;
Santa Ana, MA ;
Benavente, E .
ELECTROCHIMICA ACTA, 1998, 43 (10-11) :1327-1332
[10]   Biornimetic hydrogen evolution:: MoS2 nanoparticles as catalyst for hydrogen evolution [J].
Hinnemann, B ;
Moses, PG ;
Bonde, J ;
Jorgensen, KP ;
Nielsen, JH ;
Horch, S ;
Chorkendorff, I ;
Norskov, JK .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2005, 127 (15) :5308-5309